
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Mitigating Adversarial Gray-Box Attacks
Against Phishing Detectors

Giovanni Apruzzese∗, V. S. Subrahmanian†
∗University of Liechtenstein, Hilti Chair of Data and Application Security—Vaduz, Liechtenstein

giovanni.apruzzese@uni.li
†Northwestern University, Dept. of Computer Science & Buffett Institute of Global Affairs—Evanston, IL, USA

vss@northwestern.edu

Abstract—Although machine learning based algorithms
have been extensively used for detecting phishing websites,
there has been relatively little work on how adversaries
may attack such “phishing detectors” (PDs for short). In
this paper, we propose a set of Gray-Box attacks on PDs
that an adversary may use which vary depending on the
knowledge that he has about the PD. We show that these
attacks severely degrade the effectiveness of several existing
PDs. We then propose the concept of operation chains that
iteratively map an original set of features to a new set
of features and develop the “Protective Operation Chain”
(POC for short) algorithm. POC leverages the combination
of random feature selection and feature mappings in order
to increase the attacker’s uncertainty about the target PD.
Using 3 existing publicly available datasets plus a fourth
that we have created and will release upon the publication
of this paper1, we show that POC is more robust to
these attacks than past competing work, while preserving
predictive performance when no adversarial attacks are
present. Moreover, POC is robust to attacks on 13 different
classifiers, not just one. These results are shown to be
statistically significant at the p < 0.001 level.

Index Terms—phishing detection, cybersecurity, adver-
sarial attacks, websites, dataset

I. INTRODUCTION

MACHINE learning algorithms are increasingly
used in a wide array of cybersecurity applications

including malware detection [1], intrusion detection [2],
insider threat detection [3], spam detection [4], and the
detection of phishing websites [5].

Phishing attacks are one of the most common types of
attacks. ProofPoint’s 2020 “State of the Phish” report2

states that over 1.5 million phishing websites are created
every month and that 90% of businesses reported being
a victim of a phishing attack in 2019. Phishing attacks
offer one of the easiest ways for malicious hackers to

1We provide a sample of our dataset for the referees. We release our
resources at: https://lnu-phish.github.io/

2https://proofpoint.com/us/resources/threat-reports/state-of-phish

penetrate an enterprise. Considerable work has gone
into addressing this problem [5]–[15]. In addition to
blacklists maintained by corporations such as Google,
there are also publicly available blacklists from sites such
as PhishTank3. However, these sources become obsolete
frequently as malicious hackers move their phishing
URLs from site to site in order to evade detection.
Rule-based systems were therefore developed by several
researchers. For instance, [16] develops a set of 8 rules
to capture phishing webpages while other approaches
analyze the content of a website [17]. Another effort [18]
has examined the use of a discriminative set of features
associated with phishing URLs and then checked to see
whether a given URL was similar to a known phishing
URL based on their associated feature vectors. [19], [20]
pioneered the idea of using visual similarity between a
legitimate web page (e.g. a bank website) and another
website in order to check if the latter might be a phishing
website. During the past decade, using machine learning
to detect phishing has become widespread. Early efforts
in this direction include [21]–[27]. Despite even more re-
cent research efforts proposing increasingly sophisticated
machine learning solutions to counter this threat [5]–[14],
phishing websites still represent a dangerous menace [28]
as is evident from the aforementioned ProofPoint report.

One reason for this is that machine learning classifiers
are trained on a training dataset from which they learn
a model that separates benign entries from illegitimate
ones. However, adversaries (i.e. malicious hackers) are
continuously adapting to Phishing Detectors (PDs for
short). Often times, these adaptations are very simple,
allowing their phishing webpages to evade existing PDs
with relative ease. Most work on adversarial machine
learning for cyber-security deals with two extremes:
“white box” attacks in which the adversary has full
knowledge of the defenses used by the PD (e.g. classifier

3https://www.phishtank.org/

https://lnu-phish.github.io/
https://proofpoint.com/us/resources/threat-reports/state-of-phish
https://www.phishtank.org/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

used, list of features used) or “black box” attacks in
which the adversary has no knowledge whatsoever. Real
world attackers are not likely to have knowledge that
is at either of these extremes — their knowledge is
most likely somewhere in the “gray area” between full
knowledge (white box) and no knowledge (black box)
of the defenses. We use the term “Gray Box” to refer to
attacks where the attacker’s knowledge can lie between
these two extremes.

We propose a more robust phishing website detector
that is capable of withstanding a large class of Gray Box
attacks.4 Our notion of Gray Box is powerful enough
to capture both White Box and Black Box settings. In
particular, we make the following contributions.

• Gray Box Attack Scenarios. We consider two types
of Gray Box attacks: simple attacks, where the
adversary only knows and modifies a few features
and complex attacks, where the adversary knows a
percentage ∆ of the set of features used by the
defender. When ∆ = 100%, we have a White Box
attack. When ∆ = 0%, we have a Black Box attack.

• We show that phishing detectors based on 13 recent
works [5], [7]–[11], [13], [14], [29]–[33] during
the 2014–2019 timeframe are susceptible to these
attacks. Specifically, we formally define the Impact
of an attack on a phishing detector and show
that these attacks induce a statistically significant
impact (performance reduction) against these 13
well-known classifiers, including 2 deep learning
classifiers. Thus, our Gray Box attacks encompass
the above 2 attack scenarios and apply to 13 clas-
sifiers (as opposed to just one as in most past
work).5 The impact of these Gray Box attacks is
shown on 3 well-known datasets (DeltaPhish [34],
Mendeley [35] and UCI [36]) as well as a fourth
(new) dataset that we have created.

• We define the notion of an operation chain (oc).
Operation chains transform existing samples into a
new feature space through the iterative application
of some simple operators. Even if the adversary
knew the original feature set, he is unlikely to know
such new feature space6. We propose the Protective
Operation Chain (POC) algorithm.

• We show that POC is more robust to these at-
tacks than 13 existing PDs on the same 4 datasets
mentioned above. Past works use a wide range of

4Please note that we do NOT claim robustness to all types of Gray
Box attacks, but only to certain classes defined in the paper.

5Like past work in the area, we do not handle attacks on custom
classifiers that are often kept secret.

6Unless of course he has already compromised the enterprise system,
but in that case, he would not need to phish employees of the enterprise!

classification techniques and features—so POC is
robust when used on top of many different classi-
fication algorithms and feature sets. To validate the
claim that POC outperforms existing baselines, we
carry out a very rigorous Wilcoxon Signed Rank test
(which imposes tougher metrics than, e.g., simple
t-test) along with a Bonferroni correction. Such
test demonstrates that POC increases the robustness
of past baselines at the p < 0.001 level, i.e. the
probability that POC really outperforms past work
(as opposed to doing so by accident) is over 99.9%.7

• We show that POC is practical for real deployments.
We show that the using POC causes a statistically
negligible performance degradation in the absence
of attacks (with respect to the baselines). We con-
duct an in-depth analysis showing the pros and cons
of POC when used to harden the best baseline PD
for each dataset.

• A final contribution is our new dataset, LNU-
Phish (short for Liechtenstein and Northwestern
University-Phishing). LNU-Phish overcomes several
problems affecting existing datasets which we dis-
cuss shortly and can serve as a “future-proof”
benchmark for developing novel PDs. We will re-
lease both LNU-Phish and the code to compute our
POC implementation after paper acceptance.

The remainder of this paper is structured as follows.
Section II presents related work. Section III motivates
our LNU-Phish dataset and explains how it was built.
Section IV outlines the adversarial Gray Box attacks
proposed in this paper. The description of operation
chains and the POC algorithm is provided in Section V.
Section VI shows our main experimental results, which
are formally analyzed and discussed in Section VII.
Section VIII provides additional experiments on a special
application of POC. Section IX concludes the paper and
suggests avenues for future work.

II. RELATED WORK

We divide related work into 3 parts: (i) detection of
phishing websites; (ii) vulnerability of ML to adversarial
attacks and existing countermeasures; (iii) adversarial
attacks against phishing detectors (PD).

A. Detection of Phishing Websites

Though rule based methods (e.g. [6]) were initial
used to detect phishing sites, machine learning (ML)

7We note that p < 0.05 is the common standard for a one-star claim
of statistical significance, p < 0.01 is the standard used for a 2-star
claim, and p < 0.001 is the standard used for a 3 star claim. Our results
put POC well within this highest statistical significance category.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

based approaches are now common. [7], [10], [37],
[38] identify phishing URLs by analysing hundreds of
features extracted from the corresponding URLs. Other
approaches [8], [10], [11], [29], [33] develop classifiers
that use a reduced number of URL-based features while
achieving similar or superior accuracy (e.g., over 97%
in [33]). [39] suggests using information obtained by
external sources (e.g., DNS logs) as features. Some
papers combine URL-based features with HTML-based
features to improve performance8 [5], [9], [12], [14],
[31]. [32] and [13] also consider information provided
by external reputation sources (such as DNS records).
More recently, [30], [40] leverage image processing
with HTML inspection to detect phishing content in
compromised websites. [15] develops methods to predict
how Twitter is used to lure victims to phishing sites.
Despite all these efforts, phishing websites still represent
a widespread menace [28].

B. Adversarial Machine Learning

The recent success of deep learning has led to work
showing that small perturbations to the input can lead
to huge errors in image processing [41]–[45] as well as
in text and speech processing [46], [47]. There has also
been important work in general cybersecurity [48]–[52].

However, most existing work on adversarial ML makes
very strong assumptions about the adversary’s knowledge
about the defense. Such knowledge is typically denoted
with the notion of ‘box’ threat models. White box models
assume the attacker has complete knowledge of the
defense including the algorithm used and all the features
used [53]–[56]. Conversely, black box models [57]–[61]
assume the adversary knows absolutely nothing about the
target’s defenses. Both of these are extreme cases—in
the real-world, defenders might use ‘customized’ clas-
sifiers (e.g. ensembles) with novel features and feature
selection and late fusion [62] or custom combinations of
supervised and unsupervised learning [63] which would
be almost impossible for an adversary to guess correctly.

Some recent work considers other scenarios [64]–
[66], but assume the classifier used by the PD is known
which is unlikely [67], [68]. Some papers [56], [69]
propose methods to harden detectors based on Neural
Networks, while [70] proposes an approach to improve
the robustness of tree-based mechanisms; other efforts
focus on SVM-based techniques [71]–[73].

Our POC algorithm improves upon past work in the
following ways: (i) we are the first to propose mapping

8Because the word “accuracy” has a specific technical meaning in
machine learning, we will use the term “performance” to refer to the
quality of results generated by a classifier.

feature vectors into a new feature space for purposes
of increasing robustness to adversarial attacks against
phishing detectors9, (ii) POC is experimentally shown
to be robust against attacks on 13 different classifiers
as opposed to just one, (iii) POC is robust to different
variants of Gray Box attacks, and (iv) we carry out our
evaluation on 4 different datasets—not just 1.

C. Adversarial Attacks Against Phishing Detectors

Most work on adversarial ML in cybersecurity has
focused on malware detection [1], spam detection [4],
[72]–[74] and network intrusions [2], [75]. An impor-
tant recent effort [76] reverse engineers and subverts
the phishing detector used by the Google Chrome web
browser. Another important paper [30] devises a PD by
combining the analysis of the webpage HTML and its
image data in a white box setting where the attacker has
complete control of the entire webpage domain.

Both of these efforts, though very important, make
strong assumptions: [76] attacks just one phishing detec-
tor (albeit an important one); whereas [30] only assumes
white box adversary that attacks only one classifier (lin-
ear SVM). In contrast, POC hardens multiple classifiers
used by a defender and can protect against multiple
attack models. Furthermore, POC is robust to attacks
against 13 different classifiers including recent ones (e.g.,
Google’s Deep & Wide), as opposed to just one classifier
considered in most previous works. Finally, as mentioned
earlier, POC’s performance is tested on 4 datasets, not
just one, using distinct (but similar) feature sets.

III. THE LNU-PHISH DATASET

There are a number of well-known existing datasets for
phishing website detection. They include Mendeley [35],
DeltaPhish [34], UCI [36], PhishStorm [77] and Ebbu10.

A. Problems with Existing Phishing Datasets.

Most existing phishing datasets have one or more
major problems that hamper replication by researchers.

1) Dead. Many phishing datasets contain lists of
URLs. However many of these URLs are no longer
functional which means that it is impossible to
derive features and/or analyze the webpages asso-
ciated with those URLs today. Examples of such
datasets are PhishStorm and Ebbu.

2) Feature Only. Some datasets have the opposite
problem: they include feature vectors associated

9Note that mapping feature spaces into new feature spaces is not
new in other domains — for example, kernel tricks used in Support
Vector Machines leverage a similar strategy.

10https://github.com/ebubekirbbr/pdd

https://github.com/ebubekirbbr/pdd

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

with some websites but do not explicitly list those
websites themselves. This means that defining new
features and extracting them from the original
webpage is impossible today. This is the problem
with the Mendeley and UCI datasets.

3) Non-Uniform Feature Sets. Different datasets offer
different sets of features. Having a uniform set of
features across multiple datasets is necessary for
fair evaluation of different PDs across different
datasets—yet this turns out to be very difficult.

4) Non-Replicability. Some past efforts (e.g., [12],
[13], [32]) use public lists such as PhishTank
or Alexa Top1Million11 to build custom datasets.
However, these lists are updated very often, hence
it is not possible to replicate the exact same data
used in those studies for comparison purposes.

Simply put, the four problems listed above make it
impossible to test new approaches across these diverse
datasets and show if/when the new approaches outper-
form the old ones. The major existing datasets either
disclose the original URLs which are not active anymore,
or they do not disclose the URLs in which case follow on
research does not know where to look. In neither case can
different features (even from existing papers) be added,
let alone new features invented by follow on researchers.

B. Solution: LNU-Phish

We address these issues by creating a new dataset,
called LNU-Phish (short for Liechtenstein and North-
western University). With over 23 000 samples, LNU-
Phish is one of the biggest labeled datasets for phishing
detection (the only bigger labeled datasets we know of
are PhishStorm and Ebbu which suffer from the issues
mentioned above). A comparison of LNU-Phish with
other datasets is given in Table I.

LNU-Phish is a large and fixed dataset that can be used
for future work on PDs. It contains complete information
on each sample, such as the URL, the DNS records, as
well as the underlying HTML code and a screenshot of
the webpage. In addition, the dataset includes the features
listed in Table II. Hence, even if the webpage is taken
down, the data in LNU-Phish captures all information
for reproducible future researchers; such information can
also be augmented by, e.g., creating novel feature sets.

C. Creation Workflow of LNU-Phish

We collected benign samples from the Alexa Top-
1million list and malicious samples from the well-known

11https://www.alexa.com/topsites

Table I: Comparison of LNU-Phish with existing static datasets.

Name Date Phishing
samples

Legit
samples

URL
data

HTML
data

Reputation
data

Screenshot
data Features

PhishLoad 2012 3 510 8 190 ✓ ✓ ✗ ✗ ✗
UCI 2015 6 050 3 950 ✗ ✗ ✗ ✗ ✓

DeltaPhish 2017 1 200 4 800 ✓ ✓ ✗ ✓ ✗
Ebbu 2017 37 175 36 400 ✓ ✗ ✗ ✗ ✗

PhishStorm 2014 48 000 48 000 ✓ ✗ ✗ ✗ ✗
Mendeley 2018 5 000 5 000 ✗ ✗ ✗ ✗ ✓

LNU-Phish 2020 7 861 15 773 ✓ ✓ ✓ ✓ ✓

PhishTank and OpenPhish12 repositories. All the entries
were retrieved in March 2019.

To create a balanced corpus of benign websites, we
divided the Alexa Top-1million list into three parts: the
“top” partition includes websites from rank 1 to 10 000;
the “middle” partition includes websites ranked from
10 001 to 100 000; the “bottom” partition includes all
websites ranked below 100 001. We extract ∼ 5 000
websites from each partition. Our scripts visited each
URL and saved the corresponding HTML as well as
the full image representation of the homepage. We also
queried and stored information provided by public DNSs
for each URL. To populate the phishing entries, we
followed a procedure similar to that in [40]. We moni-
tored the PhishTank and OpenPhish sources for 3 weeks.
Whenever a new phishing URL was added to these lists,
we visited it and—if available—-saved the HTML, the
screenshot of the landing webpage, and the information
provided by the DNS query.

The resulting 15 773 benign and 7 861 phishing sam-
ples represent the proposed LNU-Phish dataset, which we
publicly release at: https://lnu-phish.github.io.

D. LNU-Phish Dataset Features

We compute the features (summarized in Table II)
for each sample in our LNU-Phish dataset. The features
are computed through the methodology in [7] and [29].
We focus on these features because they share many
similarities with existing datasets and because they are
used by several related efforts [8], [10]–[13], [29], [32].
Using similar feature sets allows a more fair comparison
of PDs devised over different datasets.13

Nevertheless, the information provided in our LNU-
Phish dataset allows the creation of any feature set for
future works. In particular, we observe that ML-based
detection systems must be periodically updated with
recent data to avoid concept-drift problems [40], [78].
To further facilitate such ‘updates’, we also release the
source-code we developed to compute the features of

12www.openphish.com
13We are aware that other studies adopt more features (e.g., [7],

[37]), but the non-reproducibility of the datasets used to validate their
PDs does not allow us to compare our paper with their work.

https://www.alexa.com/topsites
https://lnu-phish.github.io
www.openphish.com

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Table II: List of features included the LNU-Phish dataset.

URL-features REP-features HTML-features
IP address SSL final state SFH

’@’ (at) symbol URL/DNS mismatch Anchors
’-’ (dash) symbol DNS Record Favicon

Dots number Domain Age iFrame
Fake HTTPS PageRank MailForm
URL Length PortStatus Pop-Up

Redirect Redirections RightClick
Shortener Objects
dataURI StatusBar

Meta-Scripts
CSS

LNU-Phish, so that future researchers can ‘expand’ it with
more recent data by maintaining a uniform feature set.

IV. PROPOSED GRAY BOX ATTACKS ON PHISHING
DETECTORS

We now describe the Gray Box attacks on Phishing
Detectors considered in this paper, which can be divided
into simple and complex attacks. In simple attacks, the
attacker knows and targets only few specific features.
However, in the complex attacks, we assume the attacker
may know (and modify) a potentially huge number of
the features used by the PD. We vary the percentage of
features used by the defender that the attacker knows
from 0 to 100%. This range captures all adversarial
scenarios: black box (no features known), white box (all
features known), and gray box (some features known).

A. Simple Attacks

We consider three very simple Gray Box attacks:
1) GBA-1: The attacker assumes that the PD uses

information about the length of the URL to predict
whether it belongs to a phishing website or not—
as is done in several existing PDs [10], [11], [31].
Hence it is reasonable to assume that an attacker
may try to circumvent such mechanisms. Often
times, phishing URLs are longer than benign URLs
in order to confuse and trick users into clicking
on the link. For this reason, existing PDs are
usually trained on malicious samples characterized
by longer URLs. Thus, an attacker may try to evade
detection by devising phishing URLs with shorter
URLs: a possible way to accomplish this is by
using a URL shortening service (e.g., tinyurl.com).

2) GBA-2: Here, the attacker assumes that the PD
uses features related to the HTML-code (this is
done, for instance, in the PD considered in [5]), but
he may not know exactly which feature. Hence, he
tries to alter some aspects of his HTML code. For
example, he might know that some PDs consider
the ratio of internal links (i.e. within the URL’s

domain) to external links. Hence, in this attack, he
inserts a number of “internal” links to his URL
domain that might fool classifiers that use this
feature. We inserted such internal links to a host of
resources such as images, favicons, CSS snippets,
videos, audio, as well as the usual “textual” links.
Figures 1 show how such an attack might be ac-
complished. The original webpage is in Figure 1a,
whereas the adversarial webpage is in Figure 1b.
In particular, the top of Figures 1 show the HTML-
code, whereas the bottom show the rendered web-
page. We can see from the red-box in Figure 1b
that by manipulating the HTML code it is possible
to insert ‘fake’ links to internal resources, which
may favor an attacker to camouflage a phishing
webpage into a benign webpage.

3) GBA-3: This attack is a combination of the GBA-1
and GBA-2 attacks.

Even though these attacks are relatively simple, there
is considerable evidence that defenders use the HTML
content in phishing websites and the structure of the
URLs of phishing websites to build PDs [30], [32]. It is
therefore reasonable to assume that attackers will try to
use offensive techniques conforming to GBA-1–GBA-3.

B. Complex attacks

In our more sophisticated attacks GBA-∆, the adver-
sary knows a variable subset of the features used by
the defender. Let Fd be the set of features used by the
defender (the PD) and Fa be the set of features that
the attacker thinks the defender is using. This family of
attacks is based on ∆, the percentage of features actually
used by the defender that the attacker guessed correctly,
i.e. ∆ = |Fd ∩ Fa|

|Fd| . In GBA-∆ attacks, we vary ∆ by
assuming the attacker knows some Fa.

The 27 basic features used (cf. Table II) can be easily
manipulated by experts who can easily insert/remove
redirections, synthetically modify the URL length, or
change any HTML functionality of the webpage to alter
the features shown in Table II. This enables launching a
huge number of attacks using GBA-∆.

Note that when ∆ = 0, we have a black box attack,
and when ∆ = 1, we have a white box attack.

In this paper, we evaluate 7 different values of ∆.
Hence GBA-∆ represents many attack scenarios (7 in our
case) where the adversary is able to modify any selection
of ∆% of the total set of features considered. This leads
to an huge number of possibilities, viz. 2∆∗|Fd|–1 which
is a very large space of possible attacks. Simply put,
GBA-∆ captures many possible complex evasion attacks
conceivable by well-motivated and expert opponents.

tinyurl.com

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

(a) The original webpage. (b) The ‘adversarial’ webpage.

Figure 1: An example of the GBA-2 attack. On the top there is the underlying HTML-code of the webpage, whereas at the bottom there is the
rendered HTML shown in the webpage. The red box in Figure 1b shows the manipulation to the HTML-code and its result to the real page.
The ‘fake’ link can also be hidden, preventing to be shown in the rendered HTML.

C. Impact of Adversarial Attacks

In this paper, we consider attacks on 13 well known
classifiers. 9 are classical classifiers: Random Forest
(RF), K-Nearest Neighbor (KNN), Decision Tree (DT),
Logistic Regression (LR), Naive Bayes (NB), Support
Vector Machines (SVM), Extra Trees (ET), Stochas-
tic Gradient Descent (SGD), Bagging (Bag). We also
consider 2 boosting techniques—AdaBoost (AB) and
Gradient Boost (GB). Finally, we also evaluate 2 deep
learning classifiers: Multi-Layer Perceptrons (MLP) and
Google’s recent “Deep and Wide” (DnW) method [79].
Thus, we note that our Gray Box attackers assume that
the PD is using any one of these 13 classifiers, but they
do not need to know which one. We report an overview
of existing PDs and the datasets used for their evaluation
in Table III, from which we observe that many of our
classifiers are used by related work.

Table III: Classifiers and Dataset of existing PDs.

Reference Classifier Dataset
[29] MLP Custom
[7] RF, NB, MLP, LR, SVM Custom
[80] RF, SVM, NB, MLP, LR Custom
[10] RF, NB, LR Custom
[9] RF, SVM, AB UCI
[5] RF, KNN, SVM, MLP, NB UCI
[14] MLP, SVM, KNN, NB, RF UCI
[30] SVM DeltaPhish
[31] LR, SVM UCI
[32] RF Custom
[13] RF, KNN, AB Custom
[33] RF Ebbu

We define the Impact of attack Attdi of type i on

dataset d and classifier Clf on a performance metric
µ with the following Equation:

Impact(Attdi , Clf, µ) =
µ(Clf |¬Attdi)−µ(Clf |Attdi)

µ(Clf |¬Attdi)
(1)

where µ(Clf |Cond) denotes the value of the perfor-
mance metric µ of classifier Clf when condition Cond
is true.14 In the above formulation, µ can be any measure
of classifier performance (e.g. F1-score, Accuracy, etc).

For instance, suppose the F1-score of a given clas-
sifier (say Random Forest) is 80% when no attack is
performed, and 60% when an attack is launched on it.
In this case, Impact(Attdi , RF, F1) = 0.8−0.6

0.8 = 0.25,
i.e. there is a 25% reduction in the F1-score. Note that
Equation 1 can be used to measure the impact of any
adversarial attack, not just Gray Box attacks.

We expect that all the considered Gray Box attacks
(GBA-1–GBA-∆) have a significant impact on classifi-
cation algorithms used in the literature [8]–[11], [30]–
[33]. But before we evaluate this, we introduce our
proposed defensive mechanism.

V. PROPOSED COUNTERMEASURE: THE POC
ALGORITHM

In this section, we introduce the concept of operation
chains or oc, and the POC algorithm. The basic idea
behind POC is to create a new feature space (Ψ) by
randomly mixing some of the features from F used by

14We consider two conditions: if an attack is present or absent.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

a given PD. This makes it hard for the attacker to infer
which features are used by a PD and how such features
denote a phishing/benign webpage. In particular, even if
the attacker knows ∆% of the features of the PD, he
may not know how to change them in order to make a
malicious webpage be classified as benign. To achieve
this, we use operation chains which consist of a base
set of mapping operators that randomly transform some
features into a new feature, which will be included in the
actual feature space used by the ‘hardened’ PD. Simply
put, the POC algorithm obfuscates the features used by
a PD so that an adversary cannot easily tell what the PD
is doing15 and, hence, offensively react to such PD.

A. Formal description of POC

Without loss of generality, POC assumes that the
features are numeric (real valued) and that categorical
feature values will be replaced by values from a discrete
domain. The obfuscation provided by POC is done via
certain kinds of mappings.

A unary (resp. binary) feature mapping operator α
(resp. β) is a mapping from R (resp. R × R) to R. We
assume the existence of a set Fmop of unary and binary
feature mapping operators. To obfuscate the underlying
mechanism of POC, the Fmop set should consist of
mappings that are hard to reverse. There are many such
operations of course, and so we choose a suite of well-
known, nonlinear mappings. In our implementation, we
use Fmop= {log, sin, cos, tan, expi,+,−, ∗, /} as our
feature mapping operators where {log, sin, cos, tan} are
unary operators, expi is not one but a family of numeric
unary operators which take an input value x and return
xi for i ∈ {-3, -2, . . . , 2, 3}. The arithmetic operators
{+,−, ∗, /} are binary feature mapping operators16. Note
that our definitions below apply to virtually any choice
of unary and binary operators in Fmop—we are not
limited in any way to the specific operators chosen
in our implementation—new ones and the definition of
operation chains below can be seamlessly incorporated
into our framework17.

The POC algorithm maps a given set of features F into
a new feature space Ψ, composed of operation chains,
oc. Each oc is based on a subset F ⊆ F of features,
which are combined via the unary or binary operators in
Fmop. The final Ψ is then created by randomly selecting

15Our work is different from the type of obfuscation that a might
perform in order to stop his/her code from being reverse engineered.
But the idea is similar in both cases.

16Again, please note that these are the i’s used in our implementation.
The theory allows i to range over any set of integers.

17We do not claim that our selected mappings are the best. There is
an infinite space of such mappings which can be used in POC.

ψ (representing the dimensionality of Ψ) oc. Specifically,
given a set F of (original) features, we can recursively
define operation chains, each based on F⊆F, as follows:

1) Each feature f ∈F is an oc of size 0.
2) For each unary operator α∈Fmop and for each oc

of size s, α(oc) is an oc of size s+1.
3) For each binary operator β ∈ Fmop and for each

pair of operator chains oc1, oc2 of sizes s1, s2
respectively, β(oc1, oc2) is an oc of size s1+s2+1.

Suppose F is the list of features shown in Table II and
suppose F consists of any two of these features, e.g.
F = {f1, f2}. Then examples of operation chains based
on F and on the proposed set of Fmop include:

1) f1 and f2 are both oc of size 0.
2) sin(f1), cos(f2) are oc that create new features by

taking the sine and cosine, respectively of values
of features f1, f2 respectively. They have size 1.

3) sin(f1) + cos(f2) is an oc that generates a new
feature that creates feature values by summing up
the sine of the value of feature f1 and the cosine
of the value of feature f2. This oc has size 3.

4) exp(sin(f1)+cos(f2)) creates a new feature whose
value is esin(f1)+cos(f2). The size of this oc is 4.

Thus our POC framework creates Ψ as follows.
1) (Initialization) First, we select F from F, represent-

ing the features used to create each oc. We then
define the set of mapping operators, Fmop, and
choose MaxSize which is an integer greater than
0; finally, we set ψ, representing the cardinality of
the new feature space Ψ.

2) (Operation Chain Transformations) We create oc of
size MaxSize or less by combining the features
in F via the operators in Fmop.

3) (Random Selection) We randomly select ψ opera-
tion chains, which will represent Ψ.

The POC Algorithm that formally captures the infor-
mal process described above is shown in Algorithm 1.

B. Analysis of POC

We now analyze our POC algorithm.
Relationship between Ψ and F. We note that each

feature in Ψ is represented by an oc that uses a subset
of the features in F. Hence, the new Ψ and the original
F can be linked by how many features of F are included
in Ψ. Let us define the prevalence of F w.r.t. a given Ψ
as P(F,Ψ), which denotes the percentage of features in
F that are included among all oc composing Ψ. As an
example, if F=(f1, f2, f3, f4) and Ψ= (oc1, oc2) with
oc1=(f1+f2) and oc2=(sin(f3)+f1) then Ψ contains
three out of four features of F (specifically, f1, f2, f3),
meaning that P(F,Ψ)=75%. Two cases are possible:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

Algorithm 1: Proposed POC algorithm.
Input: List of features F included in a given dataset d; ϕ,

number of new features that will compose the new set
of mapped features; MaxSize maximum size of
an operation chain; Fmopα set of unary feature
mapping operators; Fmopβ set of binary feature
mapping operators

Output: The mapped features representing the new space
Φ.

1 mapped features← emptyList();
2 for h← 0 to ϕ by 1 do
3 new feature← computeNewFeature(F, MaxSize);
4 Insert new feature in mapped features;
5 return mapped features
6 // Procedure that generates a mapped_feature

7 Function computeNewFeature(F, MaxSize)
8 feature block ← chooseFeatures(F, MaxSize);
9 L← len(feature block);

10 for h← 0 to L by 1 do
11 f ← unaryOperation(feature block[h]);
12 Replace feature block[h] with f ;
13 for h← 1 to L by 1 do
14 f ←

binaryOperation(feature block[0],feature block[h]);
15 Replace feature block[0] with f ;
16 new feature← feature block[0];
17 return new feature
18 // Procedure that determines the features from F

considered to generate a mapped_feature
19 Function chooseFeatures(F, MaxSize)
20 feature block ←emptyList();
21 for h← 0 to randomChoice(MaxSize) by 1 do
22 Insert randomChoice(F) in feature block;
23 return feature block
24 // Procedure that chooses and applies an unary

operation among Fmopα on a given feature f that
composes a given new_feature.

25 Function unaryOperation(f)
26 f ← Apply randomChoice(Fmopα) to f ;
27 return f
28 // Procedure that chooses and applies a binary

operation among Fmopβ on a given pair of
features (f1, f2) that composes a given
new_feature.

29 Function binaryOperation(f1, f2)
30 f ← Apply randomChoice(Fmopβ) to f1 and f2;
31 return f

• (complete prevalence) P(F,Ψ) = 100%, i.e., Ψ
uses all the features in F. In this case18, we can
expect that using POC results in a PD with similar
performance in the absence of adversarial attacks
as a PD that does not use POC, because they will
both use the same amount of information available
to analyze each sample.

• (incomplete prevalence) P(F,Ψ) < 100%, i.e., Ψ
does not contain some features of F. In this case,
using POC will result in PDs that are trained on
less information (due to the ‘excluded’ features),

18Of course, this can only be true if F = F.

but with the capability of completely nullifying
those adversarial attacks that target features of F
not included in the oc of Ψ (by leveraging the well-
known feature removal strategy [81], [82]).

We will investigate both of these circumstances.

Goal of POC. POC assumes that attackers can only
change some features.19 Hence, POC seeks to prevent
hackers from: (i) reverse-engineering the PD by identi-
fying its complete feature set; and (ii) changing one or
two small things to evade a PD.

The first goal is achieved by randomly using the old
features (F) to create a new feature space (Ψ) which
makes it harder to reverse-engineer (or ‘steal’ [83]) the
classifier used by the PD (e.g. the attack against the
Google Chrome filter [76]). This is because the attacker’s
manipulation will affect multiple features simultaneously
and differently, making it hard for him to infer the
features used by the PD. Moreover, as described in
Section III-D, ML detectors must be updated with new
data to prevent concept drift [40], [78]. Therefore, each
new application of POC will result in a new feature
space, ensuring that attackers that ‘cracked’ the old PDs
have to repeat the process again.

The second goal is achieved as a direct consequence of
the above. The new feature space Ψ induces confusion,
e.g. a feature f ∈ F may be mapped to sin(f) and
then further combined into an oc such as 2sin(f)+log(f).
By using irreversible feature mappings, it is unlikely
that the attacker can recover the original features—
even if the attacker were to get hold of the POC-
feature vectors describing each sample. Hence, an at-
tacker may be successful in evading a PD by “making
a URL shorter” (as in GBA-1), thus manipulating the
corresponding feature. However, against a POC-hardened
PD, the manipulated feature will affect many ocs in
unpredictable ways. Increased protection is also provided
by feature-removal (cf. Section V-B)—e.g., if the features
manipulated in GBA-1 are not used (or nullified20) by
a POC-hardened PD. Nevertheless, as operation chains
get longer, recovering the original features from the new
feature values is very challenging. Therefore, the selected
mapping operators (e.g. log, sin, cos used in this paper)
should include many irreversible functions that make the
attacker’s job even more difficult.

19The assumption is realistic, because some features cannot be
changed without altering the malicious nature of a webpage, or require
a huge resource investment (e.g., modifying reputation features based
on DNS records requires compromising the respective DNS servers).

20Feature removal can occur ‘indirectly’ even if P(F,Ψ)=100%,
e.g., if Ψ contains an oc where a feature is multiplied by another feature
whose value is 0 for most samples.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

Summary. As long as Ψ contains enough of the
original features (e.g., P(F,Ψ)≥70%), and as long as
such Ψ has high dimensionality (e.g., ψ≥15oc), a POC-
hardened PD has the potential to: capture enough of the
distributional properties of the original data (providing
good classification power); obfuscating the features of
the PD (confusing the attacker); and mitigating the
attacks. Finally, we stress that the mappings we use
in this paper can be replaced (or expanded) by other
mappings (e.g. hyperbolic tangent) that are irreversible.
Our website also contains our implementation of POC.

VI. EXPERIMENTS

We use Python3 code (and leverage Scikit-Learn) to
extract all the features in Table II, as well as all the Gray
Box attacks and the POC algorithm.

Our experiments focus on validating POC w.r.t. (i) mit-
igating Gray Box attacks and (ii) maintaining high per-
formance when there are no attacks. For this, we first
assess the performance of existing PDs and their POC
versions in the absence of attacks. This shows how POC
performs when no attacks occur, and establishes the
performance of the selected PDs. We then evaluate the
Impact of the attacks on existing PDs and their POC
versions. We first show performance w.r.t. simple attacks
(GBA-1 to GBA-3), and then show the results against
complex attacks (the 7 variants of GBA-∆). All these
evaluations involve the 13 classifiers trained on each of
the 4 datasets considered in the paper. We discuss all
these results in Section VII.

The rest of this section assesses POC with complete
prevalence, i.e., when P(F,Ψ)=100%. The motivation
is twofold: ensure a fair comparison of the performance
between the baseline and POC-hardened classifiers; and
assess the hardening of POC provided by its (random)
feature mapping, and not due to the exclusion of the ‘at-
tacked’ features (cf. Section V-B). We will also evaluate
POC when P(F,Ψ)<100% in Section VIII.

A. Testbed

Baselines. Our experimental testbed contains 13 ‘base-
line’ classifiers (used in existing phishing detectors) and
the 4 different datasets considered in this paper (UCI,
Mendeley, DeltaPhish, LNU-Phish—see Section III). For
each dataset, all such baseline classifiers adopt the
same set of features. For the LNU-Phish and DeltaPhish
datasets, we use the features in Table II (we manually
compute the REP-features in the DeltaPhish dataset
using the same methodology adopted to create our LNU-
Phish dataset—see Section III). For the other datasets
(Mendeley, UCI), we use all the features provided by

their creators. We note that all these datasets share similar
URL- and HTML-features, which are all affected by the
attacks considered in this paper. We apply an 80:20 split
for the training and test partitions, where the propor-
tion of benign-to-malicious samples is as reported in
Table I. We did extensive hyper-parameter optimization
using grid search across the parameter space of each
classifier in order to tune that classifier to achieve best
performance. The results show the performance after
this hyper-parameter optimization (the most influential
parameters for our algorithms are provided in the sup-
plementary material).

POC-hardened classifiers. We consider the (fine-
tuned) ‘baseline’ variant of each classifier as basis. We
use the Fmop in Section V-A, and specify F = F,
MaxSize=3, and ψ=20, meaning that Ψ is composed of
20 oc. Because we are considering P(F,Ψ)=100%, the
POC classifiers include—across their 20 oc—all features
of the baseline classifiers (yielding a ‘pseudo-random’
POC). We train (and test) each POC classifier on all the
datasets considered in the paper by using the same splits.
Each classifier (on each dataset) adopts the mapping
produced by POC that achieves the best performance
during development (i.e., in the no-attack case): in reality
only a single PD (i.e., the one with best performance) is
deployed, and the adversarial attacks cannot be antici-
pated. The Gray Box attacks are generated by using the
malicious samples in the test partition as base. When we
compute the Impact of an attack, we rely on the Recall
as performance metric (see Equation 1), because we
consider evasion attacks which involve only malicious
samples. The 7 attacks of GBA-∆ family are repeated
10 times, each time by modifying different features (but
always corresponding to the same ∆), and the reported
values correspond to the average of these 10 trials.

POC is not likely to yield good results when used
with randomly chosen parameters. During training time,
we identify the best parameter settings for each classifier
using standard grid-search based hyper-parameter opti-
mization. 21 Once the classifier is trained, the resulting
POC ‘hardened’ classifier obtains a performance com-
parable to the ‘baseline’ (in the absence of adversarial
attacks) on test data not seen during training. Though
costly, training is a one time operation. We will discuss
the run-time for training in Section VI-E.

B. No Attack Case: Performance of Baselines vs. POC

We first assess all PDs (the ‘baselines’ and their POC-
hardened variants) when no adversarial attacks occur.

21Grid search looks at all the possible combinations of F that result
in Ψ. To make this humanly feasible, we considered 100 combinations
and choose the best one for each classifier.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

Table IV shows the result of using the 13 baseline clas-
sifiers on the four datasets as done by past work, while
Table V shows the result of using the POC approach
using all the features in the dataset. We tested the efficacy
of POC in the no attack case because of concerns that
the random manipulation of features could lead to a drop
in performance. By comparing Table IV with Table V,
we observe that the notion of operation chains used by
POC does lead to a small reduction in performance of the
best classifier in each case (see the last row of Tables IV
and V), but we note that this drop is very small (we
will discuss such results in Section VII-A). To better
visualize the magnitude of the drop, Figures 2 shows
the distribution of the F1-score (Figure 2a) and Recall
(Figure 2b) achieved by the baseline classifiers (blue
boxplots) and their POC variant (green boxplots) on each
dataset. We see that some nontrivial degradation only
occurs with the Mendeley dataset, but a close look at
Table V reveals that the best classifiers still yield high
performance in the absence of attacks: for instance, the
baseline ET classifier on Mendeley has 0.99 F1-score and
Recall, and its hardened POC variant has 0.96 F1-score
and 0.95 Recall.

LNU-Phish DeltaPhish Mendeley UCI
Dataset

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

 (n
o

at
ta

ck
)

Baseline
POC

(a) Distribution of the F1-score.

LNU-Phish DeltaPhish Mendeley UCI
Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll
(n

o
at

ta
ck

)

Baseline
POC

(b) Distribution of the Recall.

Figure 2: Comparison (baseline vs POC) in the no-attack case.

However, the next few experiments show that POC
outperforms past work when the adversary carries out
any of the considered attacks (both simple and complex),
and hence this negligible reduction in performance is
amply compensated by POC’s increased robustness.

C. Attacks against existing PDs

We assess the Impact of the considered attacks on
the baseline classifiers. We begin with the simple attacks
(GBA-1, GBA-2 and GBA-3) and then proceed with the
complex attacks (the 7 variants of GBA-∆).

Impact of simple attacks: Table VI shows the Im-
pact of the GBA-1–GBA-3 attack on each of the 4
datasets and 13 classifiers (used in existing phishing
detectors). We see, for instance, that GBA-1 against the
RF of the LNU-Phish dataset leads to a 12.4% drop, but

the drop is 96.6% on the DeltaPhish dataset. On average
(last rows of subtables in Table VI), the GBA-1–GBA-3
attacks lead to significant drops on all datasets (varying
from 11.7% to 90.2%), irrespective of the classifier used.

Impact of complex attacks: We now consider the
complex attacks represented by GBA-∆, which assume
that the attacker knows ∆% of the features used by the
targeted PD. We vary ∆ from 10−70% in steps of 10%.
Table VII shows the Impact of these attacks on existing
PDs on all 4 datasets. Unsurprisingly, as ∆ increases,
the attacks have a greater Impact on average (the last
line showing “averages” in the 4 subtables of Table VII
showing steady increases from left to right). Moreover,
some of the attacks are very effective—for instance, if the
attacker knows 30% of the features used by the defender,
the Impact ranges from 15.7% to 43.1% which is very
substantial. A formal statistical analysis of such results
in presented in Section VII-A.

We observe that some attacks caused a negative Impact
(e.g., the NB in Table VIIc), implying that the PD was
able to correctly recognize more phishing samples than in
the absence of attacks. Such occurrence is a byproduct of
a less than optimal training phase, because the adversarial
manipulation resulted in a sample that the classifier
considers to be “more malicious” than its non-modified
variant (as shown in Table IV, the NB classifier on the
Mendeley dataset achieves the lowest performance).

D. Attacks against POC

We now assess the effectiveness of POC in protecting
against the considered Gray Box attacks. We do so by
measuring the Impact of every attack against the POC
version of each baseline classifier, and computing the Im-
pact difference between the baseline and its POC variant.
This allows an immediate understanding of the results:
if the number is greater than 0, then POC mitigated the
attack; otherwise, it was more affected.

We begin by evaluating the simple attacks, and then
conclude with the complex attacks.

Simple attacks: We assess POC against the simple
GBA-1–GBA-3 attacks. These results are reported in
Table VIII. A positive difference (shown in bold) means
that POC was more resilient to the attack than the
baselines, while a negative number means POC was less
resilient; higher values are highlighted with a darker
background. Table VIII consists mostly of bold entries,
showing that POC is more resilient than past work for
almost all combinations of dataset and classifier used.
Additionally, we see from the last rows (“average”) that
on average POC exhibited superior performance for each
of the 4 datasets considered: the Impact of the GBA-1–

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Table IV: No Attack Case: Results of the ‘baseline’ PDs for each dataset and classifier (using all features in the dataset).

LNU-Phish DeltaPhish Mendeley
Phishing

UCI
Phishing

Classifier F1-score Acc FPR TPR F1-score Acc FPR TPR F1-score Acc FPR TPR F1-score Acc FPR TPR

RF 0.973 0.982 0.013 0.972 0.959 0.989 0.001 0.926 0.978 0.975 0.033 0.989 0.973 0.973 0.045 0.975
SVM 0.983 0.989 0.004 0.974 0.450 0.876 0.025 0.319 0.927 0.928 0.092 0.943 0.943 0.936 0.113 0.958
KNN 0.996 0.998 0.002 0.997 0.971 0.991 0.007 0.971 0.974 0.975 0.037 0.984 0.984 0.983 0.045 0.997
SGD 0.985 0.990 0.003 0.977 0.458 0.874 0.030 0.333 0.931 0.932 0.083 0.943 0.939 0.932 0.114 0.951
DT 0.986 0.991 0.006 0.985 0.988 0.996 0.002 0.985 0.946 0.948 0.056 0.948 0.990 0.989 0.017 0.991
LR 0.985 0.990 0.003 0.977 0.521 0.776 0.293 0.765 0.937 0.938 0.073 0.946 0.942 0.935 0.115 0.957
NB 0.955 0.971 0.010 0.932 0.714 0.915 0.050 0.667 0.802 0.832 0.046 0.700 0.651 0.715 0.008 0.485

MLP 0.990 0.994 0.001 0.983 0.929 0.978 0.007 0.892 0.976 0.976 0.023 0.975 0.984 0.983 0.026 0.985
AB 0.986 0.991 0.002 0.977 0.872 0.961 0.019 0.833 0.949 0.951 0.054 0.952 0.947 0.941 0.107 0.962
ET 0.999 0.999 0.001 0.999 0.988 0.996 0.001 0.980 0.991 0.991 0.006 0.988 0.991 0.990 0.015 0.992
GB 0.999 0.999 0.001 0.999 0.995 0.998 0.001 0.990 0.990 0.991 0.009 0.989 0.990 0.988 0.020 0.993

DnW 0.988 0.992 0.002 0.980 0.929 0.980 0.005 0.886 0.969 0.970 0.027 0.965 0.974 0.970 0.051 0.981
Bag 0.987 0.992 0.003 0.980 0.983 0.995 0.003 0.980 0.986 0.987 0.012 0.984 0.989 0.988 0.020 0.991
best 0.999 0.999 0.001 0.999 0.995 0.998 0.001 0.990 0.991 0.991 0.007 0.989 0.991 0.990 0.023 0.997

Table V: No Attack Case: Results of the POC-hardened PDs for each dataset (using all features in the dataset).

LNU-Phish DeltaPhish Mendeley
Phishing

UCI
Phishing

Classifier F1-score Acc FPR TPR F1-score Acc FPR TPR F1-score Acc FPR TPR F1-score Acc FPR TPR

RF 0.997 0.998 0.001 0.997 0.990 0.997 0.001 0.980 0.965 0.963 0.033 0.963 0.988 0.987 0.028 0.994
SVM 0.957 0.972 0.009 0.935 0.306 0.866 0.020 0.195 0.682 0.646 0.382 0.715 0.898 0.888 0.184 0.913
KNN 0.997 0.998 0.001 0.997 0.985 0.995 0.004 0.985 0.933 0.925 0.124 0.983 0.986 0.985 0.032 0.993
SGD 0.842 0.888 0.121 0.904 0.409 0.841 0.105 0.365 0.815 0.800 0.208 0.831 0.902 0.892 0.174 0.915
DT 0.989 0.993 0.004 0.986 0.990 0.997 0.001 0.980 0.881 0.875 0.104 0.869 0.987 0.986 0.026 0.991
LR 0.942 0.963 0.008 0.904 0.382 0.689 0.422 0.635 0.781 0.785 0.128 0.723 0.895 0.884 0.187 0.909
NB 0.882 0.921 0.071 0.901 0.723 0.902 0.125 0.850 0.734 0.642 0.599 0.927 0.891 0.879 0.209 0.913

MLP 0.990 0.993 0.001 0.982 0.940 0.982 0.014 0.935 0.883 0.868 0.180 0.933 0.980 0.979 0.045 0.989
AB 0.987 0.991 0.005 0.984 0.921 0.977 0.014 0.900 0.870 0.864 0.108 0.853 0.923 0.915 0.148 0.940
ET 0.998 0.998 0.001 0.997 0.987 0.996 0.001 0.975 0.962 0.960 0.029 0.954 0.988 0.987 0.028 0.994
GB 0.998 0.998 0.001 0.998 0.985 0.995 0.001 0.975 0.961 0.958 0.040 0.962 0.991 0.990 0.022 0.996

DnW 0.987 0.992 0.004 0.983 0.901 0.970 0.006 0.841 0.901 0.912 0.114 0.913 0.968 0.964 0.077 0.985
Bag 0.988 0.992 0.003 0.983 0.990 0.997 0.001 0.980 0.956 0.954 0.044 0.956 0.987 0.986 0.029 0.993
best 0.998 0.998 0.001 0.998 0.990 0.997 0.001 0.980 0.962 0.965 0.030 0.963 0.991 0.990 0.022 0.996

Table VI: Simple attack case: Impact of GBA-1 to GBA-3 on every baseline classifier for each dataset (lower is better).

Clf LNU-Phish DeltaPhish Mendeley UCI

RF 0.124 0.966 0.305 0.750
SVM 0.107 0.784 0.397 0.730
KNN 0.066 0.436 0.017 0.189
SGD 0.121 0.422 0.341 0.730
DT 0.126 0.942 0.813 0.755
LR 0.003 0.080 0.484 0.746
NB 0.267 0.911 0.096 0.506

MLP 0.137 0.696 0.293 0.712
AB 0.114 0.994 0.252 0.748
ET 0.190 0.965 0.619 0.696
GB 0.132 0.984 0.373 0.616

DnW 0.007 0.610 0.249 0.269
Bag 0.124 0.980 0.675 0.723

average 0.117 0.751 0.378 0.628

(a) Impact of GBA-1.

Clf LNU-Phish DeltaPhish Mendeley UCI

RF 0.290 0.099 0.161 0.112
SVM 0.437 0.103 0.070 0.200
KNN 0.567 0.081 0.970 0.361
SGD 0.672 0.573 0.954 0.157
DT 0.097 0.078 0.121 0.159
LR 0.022 0.270 0.280 0.200
NB 0.364 1.000 −0.056 0.502

MLP 0.048 0.134 0.123 0.272
AB 0.075 0.126 0.128 0.104
ET 0.189 0.139 0.081 0.090
GB 0.172 0.062 0.080 0.455

DnW 0.102 0.004 0.301 0.739
Bag 0.145 0.119 0.732 0.162

average 0.244 0.214 0.303 0.270

(b) Impact of GBA-2.

Clf LNU-Phish DeltaPhish Mendeley UCI

RF 0.311 1.000 0.669 1.000
SVM 0.540 0.972 0.611 1.000
KNN 0.654 0.709 0.972 0.673
SGD 0.697 0.926 0.998 1.000
DT 0.287 0.942 0.823 1.000
LR 0.015 0.603 0.831 1.000
NB 0.460 1.000 0.062 1.000

MLP 0.171 0.930 0.452 0.998
AB 0.132 1.000 0.481 1.000
ET 0.198 1.000 0.628 1.000
GB 0.185 1.000 0.510 1.000

DnW 0.106 0.652 0.469 0.999
Bag 0.285 1.000 0.951 0.940

average 0.310 0.902 0.650 0.97

(c) Impact of GBA-3.

GBA-3 attacks on the baselines are 1% to 53.5% higher
than for POC (last row of the subtables in Table VIII).

Complex attacks: We now turn to the value of
POC in protecting against the 7 variants of the GBA-∆
attacks. The results are reported in Table IX. A positive
difference (denoted in bold) means that POC was more
resilient to the attack than the baselines, while a negative
number means POC was less resilient; higher values are
highlighted with a darker background. We see that most
entries in the table are in boldface, suggesting that POC
is more resilient to the GBA-∆ attack irrespective of the
dataset and classifier used. As can be seen from the last
rows (“average”), POC exhibited superior performance
for 27 of 28 combinations of dataset and classifier; the
one exception is the UCI dataset with ∆ = 60% where
the performance of the baseline is very slightly better

than that of POC.

Finally, Figure 3 shows the aggregated results of all
our attacks on all datasets and classifiers. Specifically,
Figure 3 shows 10 pairs of boxplots: each pair represents
one of our considered attacks (the 3 simple, and the
7 complex attacks). The blue (resp. green) boxplot of
each pair represents the distribution of the Impact of the
corresponding attack against the baseline (resp. POC)
classifiers (we exclude the few outliers). The figure
shows that, in general, the POC classifiers are less
affected by the attacks.

All tables showing the Impact of the attacks (i.e.,
Tables VI to IX) are provided with the same format as
those of the no attack case (Table IV and Table V) in
the supplementary material.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

Table VII: Complex attack case: Impact of the GBA-∆ attacks on the baseline PDs for every dataset (lower is better).

LNU-Phish Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.001 0.044 0.084 0.145 0.173 0.178 0.137
SVM 0.072 0.243 0.481 0.496 0.577 0.681 0.686
KNN 0.001 0.013 0.022 0.026 0.043 0.043 0.034
SGD 0.258 0.278 0.307 0.360 0.425 0.496 0.612
DT −0.002 −0.001 0.099 0.099 0.205 0.204 0.204
LR 0.082 0.089 0.239 0.325 0.368 0.387 0.441
NB 0.068 0.084 0.125 0.199 0.340 0.519 0.639

MLP 0.102 0.113 0.193 0.375 0.450 0.742 0.650
AB 0.005 0.005 0.101 0.000 0.000 −0.003 −0.002
ET −0.002 0.005 0.011 0.047 0.090 0.087 0.087
GB 0.045 0.049 0.153 0.344 0.369 0.478 0.530

DnW 0.012 0.010 0.009 0.056 0.009 0.089 0.264
Bag 0.003 0.008 0.219 0.271 0.277 0.277 0.337

average 0.049 0.072 0.157 0.211 0.255 0.321 0.356

(a) GBA-∆: Impact for the LNU-Phish dataset.

DeltaPhish Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.038 0.198 0.356 0.389 0.678 0.599 0.567
SVM 0.049 0.221 0.037 0.046 −0.123 −0.082 −0.405
KNN 0.002 0.157 0.327 0.491 0.568 0.699 0.557
SGD −0.064 0.106 0.267 0.111 0.302 0.484 0.112
DT −0.001 0.080 0.110 0.191 0.189 0.270 0.269
LR 0.135 0.327 0.522 0.543 0.625 0.659 0.523
NB 0.037 0.105 0.254 0.474 0.631 0.640 0.693

MLP 0.081 0.211 0.317 0.389 0.528 0.626 0.763
AB −0.023 0.167 0.224 0.223 0.176 0.599 0.637
ET 0.010 0.096 0.235 0.254 0.503 0.583 0.687
GB 0.018 0.080 0.138 0.220 0.292 0.376 0.415

DnW 0.012 0.010 0.009 0.011 0.009 0.098 0.265
Bag 0.087 0.150 0.298 0.319 0.351 0.393 0.400

average 0.030 0.147 0.238 0.282 0.363 0.458 0.421

(b) GBA-∆: Impact for the DeltaPhish dataset.

Mendeley Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.033 0.235 0.293 0.474 0.618 0.593 0.596
SVM 0.189 0.317 0.345 0.299 0.467 0.596 0.643
KNN 0.132 0.240 0.408 0.631 0.653 0.706 0.700
SGD 0.041 0.212 0.218 0.184 0.245 0.320 0.336
DT 0.095 0.247 0.371 0.461 0.517 0.585 0.522
LR 0.082 0.117 0.213 0.397 0.433 0.393 0.461
NB −0.072 −0.148 −0.233 −0.227 −0.202 −0.169 −0.105

MLP 0.118 0.141 0.148 0.221 0.239 0.300 0.374
AB 0.049 0.156 0.226 0.375 0.450 0.548 0.453
ET 0.196 0.345 0.564 0.659 0.758 0.672 0.783
GB 0.034 0.116 0.261 0.323 0.406 0.431 0.614

DnW 0.037 0.081 0.185 0.271 0.456 0.568 0.631
Bag 0.129 0.444 0.570 0.580 0.746 0.805 0.886

average 0.083 0.193 0.275 0.358 0.445 0.488 0.531

(c) GBA-∆: Impact for the Mendeley dataset.

UCI Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.022 0.304 0.554 0.481 0.553 0.329 0.038
SVM 0.135 0.337 0.501 0.577 0.537 0.352 0.338
KNN 0.163 0.374 0.481 0.557 0.800 0.864 0.814
SGD 0.201 0.298 0.371 0.532 0.657 0.601 0.400
DT 0.300 0.390 0.403 0.389 0.435 0.480 1.000
LR 0.199 0.429 0.435 0.604 0.445 0.316 0.220
NB 0.400 0.350 0.237 0.085 −0.221 −0.422 −0.735

MLP 0.254 0.467 0.715 0.639 0.695 0.331 0.261
AB 0.200 0.310 0.401 0.389 0.454 0.312 0.334
ET 0.110 0.212 0.348 0.607 0.110 0.085 0.086
GB 0.123 0.270 0.364 0.612 0.730 0.565 0.464

DnW 0.205 0.250 0.384 0.491 0.472 0.586 0.627
Bag 0.056 0.192 0.409 0.517 0.616 0.666 0.695

average 0.182 0.322 0.431 0.498 0.483 0.390 0.350

(d) GBA-∆: Impact for the UCI dataset.

Table VIII: Simple attack case. Differences between the Impact of GBA-1 to GBA-3 on the baselines and on POC (higher is better).

Clf LNU-Phish DeltaPhish Mendeley UCI

RF 0.102 0.061 0.284 0.075
SVM 0.115 0.791 0.372 0.080
KNN 0.044 0.157 −0.030 0.013
SGD 0.179 0.001 0.349 0.027
DT 0.130 0.110 0.807 0.030
LR 0.028 0.076 0.477 0.025
NB 0.133 0.348 0.096 −0.152

MLP 0.124 0.273 0.284 −0.073
AB 0.089 0.068 0.252 0.235
ET 0.171 0.115 0.544 0.086
GB 0.115 0.084 0.342 0.106

DnW −0.001 −0.015 0.050 0.030
Bag 0.120 0.083 0.633 0.225

average 0.103 0.166 0.344 0.055

(a) GBA-1: Impact difference.

Clf LNU-Phish DeltaPhish Mendeley UCI

RF 0.082 −0.365 0.058 0.057
SVM 0.426 0.026 0.377 0.191
KNN 0.048 −0.876 0.903 0.256
SGD 0.763 −0.223 0.682 0.137
DT −0.001 −0.210 0.032 0.009
LR 0.101 0.274 0.290 0.197
NB 0.270 0.077 −0.125 0.540

MLP −0.106 0.054 0.058 0.079
AB −0.019 −0.408 0.067 0.116
ET −0.011 −0.215 −0.061 0.034
GB −0.002 −0.398 −0.023 0.223

DnW −0.03 −0.219 0.288 0.130
Bag −0.059 −0.386 0.591 0.058

average 0.112 −0.220 0.241 0.156

(b) GBA-2: Impact difference.

Clf LNU-Phish DeltaPhish Mendeley UCI

RF −0.005 0.108 0.348 0.242
SVM 0.590 0.080 0.415 0.845
KNN 0.040 0.538 0.905 0.420
SGD 0.357 0.511 0.038 0.806
DT 0.152 0.223 0.569 0.484
LR −0.43 0.859 0.958 0.831
NB 0.038 0.067 0.127 0.987

MLP −0.059 0.129 0.092 0.508
AB 0.025 0.046 0.248 0.550
ET −0.081 0.185 0.284 0.450
GB 0.021 0.075 0.161 0.237

DnW −0.011 −0.019 0.155 0.356
Bag −0.036 0.116 0.625 0.233

average 0.046 0.224 0.378 0.535

(c) GBA-3: Impact difference.

GBA1 GBA2 GBA3 GBA
(10%)

GBA
(20%)

GBA
(30%)

GBA
(40%)

GBA
(50%)

GBA
(60%)

GBA
(70%)

Gray-Box Attack

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Im
pa

ct
 (o

n
R

ec
al

l)

Baseline
POC

Figure 3: Aggregated Impact on all the baseline and POC classifiers.

E. Run Time of Training Phase

Table X shows the time (in seconds) required to train
the baseline version and the POC-hardened variant of
each classifier.22

Overview. We see that neural net classifiers (MLP,
DnW) require the most time to train, regardless of
whether POC is applied or not. As these classifiers
do not provide great detection performance (as shown
in previous sections), we do not recommend them as
phishing detectors.

Baseline vs POC. Surprisingly, the training time of
POC is comparable to that of the corresponding baseline.

22Experiments were performed on an Intel 7700HQ CPU (4 cores, 8
threads, 2.8 GHz) with 32GB RAM. We parallelized computations of
those classifiers that support multiprocessing (according to scikit-learn).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

Table IX: Complex attack case. Differences between the Impact of the GBA-∆ attack on the baselines and on POC (higher is better).

LNU-Phish Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.003 0.004 −0.003 −0.111 −0.197 −0.315 −0.408
SVM 0.048 0.107 0.196 0.210 0.150 0.146 0.084
KNN 0.004 0.004 0.005 0.003 0.005 0.008 0.002
SGD 0.183 0.179 0.209 0.161 0.144 0.104 0.070
DT 0.000 0.001 0.006 −0.029 −0.034 −0.237 −0.133
LR 0.054 0.017 0.091 0.118 0.096 0.062 0.069
NB 0.067 0.076 0.098 0.116 0.115 0.056 0.063

MLP 0.001 0.105 0.093 0.090 0.247 0.499 0.559
AB 0.008 0.008 −0.027 −0.136 −0.166 −0.370 −0.368
ET 0.002 −0.001 0.000 0.005 0.006 −0.075 −0.188
GB 0.013 0.013 0.011 0.107 0.053 0.171 0.189

DnW −0.015 −0.004 −0.012 0.03 −0.004 0.005 0.025
Bag 0.003 0.003 0.014 0.104 0.209 0.209 0.305

average 0.029 0.039 0.053 0.051 0.048 0.021 0.021

(a) GBA-∆: Impact differences for the LNU-Phish dataset.

DeltaPhish Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF −0.032 0.072 0.161 0.127 0.260 0.157 0.054
SVM 0.311 0.283 0.425 0.532 0.753 0.764 0.251
KNN 0.024 0.169 0.197 0.369 0.391 0.296 0.314
SGD 0.188 0.164 0.409 0.027 0.374 0.291 0.347
DT −0.084 −0.141 −0.238 −0.211 −0.220 −0.231 −0.219
LR 0.041 0.070 0.191 0.086 0.173 0.127 0.243
NB −0.058 −0.067 −0.027 0.114 0.131 0.154 −0.051

MLP −0.130 −0.174 −0.188 −0.140 0.022 0.219 0.602
AB −0.023 −0.022 −0.080 −0.216 −0.405 −0.093 −0.027
ET −0.051 −0.045 −0.044 −0.094 0.011 −0.037 0.033
GB −0.014 −0.019 −0.077 −0.074 −0.039 −0.042 −0.026

DnW −0.058 −0.003 0.0310 0.037 −0.010 0.032 0.037
Bag 0.050 0.050 0.104 0.096 0.136 0.157 0.090

average 0.012 0.0259 0.066 0.051 0.121 0.138 0.126

(b) GBA-∆: Impact differences for the DeltaPhish dataset.

Mendeley Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF −0.034 −0.003 0.011 0.099 0.113 −0.002 −0.052
SVM 0.282 0.258 0.142 0.464 −0.158 0.040 0.200
KNN 0.078 0.112 0.150 0.292 0.264 0.288 −0.037
SGD 0.052 0.175 0.114 0.089 0.075 0.128 0.265
DT −0.063 0.027 −0.086 −0.016 0.084 0.129 0.174
LR 0.097 0.126 0.127 0.234 0.232 0.125 −0.106
NB −0.073 −0.135 −0.196 −0.183 −0.143 −0.106 −0.037

MLP −0.008 −0.028 −0.114 −0.182 −0.003 0.116 −0.056
AB 0.023 0.049 0.114 0.067 0.066 0.319 0.162
ET 0.159 0.073 0.158 0.245 0.242 0.194 0.138
GB −0.044 0.059 0.007 0.037 0.058 −0.060 0.076

DnW 0.068 0.073 0.055 0.001 0.124 0.111 0.049
Bag −0.034 0.173 0.155 0.062 0.115 0.096 0.242

average 0.039 0.074 0.049 0.093 0.083 0.106 0.079

(c) GBA-∆: Impact differences for the Mendeley dataset.

UCI Features Modified (∆)
Classifier 10% 20% 30% 40% 50% 60% 70%

RF −0.034 0.002 0.140 −0.199 0.102 −0.019 −0.067
SVM −0.070 0.040 0.068 −0.016 0.113 0.009 0.105
KNN 0.072 0.134 0.096 0.018 0.062 0.133 0.308
SGD −0.161 −0.176 −0.027 0.221 0.430 0.327 0.305
DT 0.060 −0.007 −0.078 −0.172 −0.063 0.100 0.795
LR 0.116 0.093 −0.021 0.015 −0.115 0.001 0.174
NB 0.122 −0.141 −0.220 −0.264 −0.586 −0.343 −0.652

MLP 0.010 −0.032 −0.039 −0.189 −0.235 −0.568 −0.097
AB −0.007 0.113 0.028 0.004 0.137 −0.035 0.158
ET 0.026 0.008 0.173 0.553 0.045 0.048 −0.136
GB −0.017 0.016 0.006 0.010 0.174 0.115 0.401

DnW 0.015 0.052 −0.014 0.048 0.016 0.043 0.020
Bag −0.017 −0.015 −0.035 0.004 −0.009 0.101 0.294

average 0.010 0.007 0.006 0.003 0.006 −0.005 0.124

(d) GBA-∆: Impact differences for the UCI dataset.

Table X: Training Times. For each dataset and PD, we report the time
(in seconds) required to train its baseline and POC variants.

Dataset LNU-Phish DeltaPhish Mendeley UCI
Classifier Base POC Base POC Base POC Base POC

RF 0.46 1.03 0.50 0.25 0.59 0.24 0.41 0.36
SVM 1.15 2.66 0.10 0.11 0.75 0.64 0.52 0.77
KNN 0.06 0.03 0.02 0.01 0.01 0.01 0.11 0.06
SGD 0.22 0.19 0.01 0.02 0.15 0.06 0.14 0.13
DT 0.07 0.24 0.02 0.04 0.03 0.01 0.02 0.04
LR 0.11 0.30 0.07 0.03 0.89 0.64 0.12 0.07
NB 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

MLP 18.7 22.7 8.03 4.71 15.7 13.6 14.2 28.9
AB 0.56 0.94 1.24 1.61 2.57 1.44 0.25 0.25
ET 1.32 1.63 0.38 0.38 0.11 0.11 1.13 1.22
GB 2.14 29.7 2.16 3.69 3.33 4.19 5.59 6.79

DnW 53.4 62.4 21.9 12.7 22.7 18.2 25.0 35.4
Bag 0.94 1.73 1.24 0.4 1.38 1.31 1.45 1.28

POC requires slightly more time on LNU-Phish and UCI,
but slightly less time on Mendeley and DeltaPhish. We
reiterate that POC must be trained. If random hyper-
parameters are used, it is unlikely to yield great perfor-
mance (i.e., low false positives and high true positives).
The results in Table X denote the time required to train
the ‘best’ configuration of POC after our extensive grid-
search optimization. Real-world deployments must train.
Fortunately, training only needs to be done infrequently
(e.g. when hackers change their phishing methods and
retraining is needed to prevent concept-drift [78]).

VII. DISCUSSION

We highlight the key findings from our huge experi-
mental analysis by providing a formal statistical analysis
of our results, as well as an in-depth assessment of a
pragmatic application of POC, showing its pros and cons.

A. Statistical Analysis

We conduct a statistical analysis of our results with
the goal of answering three questions:

1) is the slight performance drop of POC in the no-
attack case significant?

2) is the Impact of the considered attacks on the
baseline classifiers significant?

3) does POC provide better protection against such
attacks than the baseline classifiers?

To answer all these questions, we rely on the Wilcoxon
Signed Rank test which performs a pairwise comparison
of the samples of two populations. The output of the
test is a p-value that provides the probability that the
two populations were generated by the same underlying
process: if the resulting p-value is higher (resp. lower)
than a given target threshold α, then the two populations
can be considered to be statistically equivalent (resp.
different). Typically, α is chosen to be 0.05, meaning
the chance of a correct claim is 95%.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

1) No-attack case performance: We statistically com-
pare the populations of the Recall (i.e., detection rate)
and F1-score achieved by the baseline and POC clas-
sifiers in the no attack case; all populations consist of
52 elements (given by 13 classifiers and 4 datasets).
The resulting p-value of these comparisons is 0.37 for
the Recall, and 0.23 for the F1-score. Both p-values are
much higher than α, meaning that the populations in
both tests can be considered to be statistically equivalent.
Therefore, the performance drop of POC is negligible.
The reason for this is that our POC implementation in
Section VI assumes complete prevalence—meaning that
the baseline and POC classifiers use the same amount
of information to perform their inference (but the POC
variants maps such information in a different space).

2) Impact Assessment: we compare the populations
containing the Recall before and after the execution of
each Gray Box attack (hence, the populations have 52
elements for each comparison) on the ‘baseline’ PD. The
resulting p-value are not only always lower than α, but
are also almost always equal to 0—the only exception
is for GBA-∆ with ∆=10%, which has a p-value of
0.00003. Therefore, all attacks induce a statistically sig-
nificant drop in the baseline detection rate. This motivates
the search for a solution that mitigates such Impact.

3) Protection of POC: our experiments suggest that
hardening classifiers with POC yields results that are
superior to those of their baseline variants, but in some
cases, the difference is small (see Figure 3) and in
other cases the baselines are better (i.e., the negative
values in Tables VIII and IX). Hence, answering the
third question requires a more fine-grained investigation.
For each dataset, we compare two populations containing
the Impact of the considered attacks (GBA-1-GBA-3,
and GBA-∆ in its 7 variants—10 attacks in all). The
first population represents the Impact against the baseline
classifiers, and the second population represents the Im-
pact against the POC versions of the classifiers. Hence,
each population has 130 samples (13 Clf * 10 Att).
Since we distinguish the populations on a per-dataset
basis, we apply the Bonferroni Correction, thus resulting
in a target α=0.0125 (because we are considering 4
different scenarios, one per dataset). Table XI shows the
resulting p-values and Effect Sizes of the test. We see that
all p-values are below our target α=0.01. Furthermore,
the different Effect Sizes also confirm the low chance
that the two populations were generated by the same
underlying stochastic process. The results confirm that
using POC yields more resilient classifiers against the
Gray Box attacks considered in this paper.

Table XI: Statistical comparison of the Impact against the baselines
and POC on each dataset (via a Wilcoxon Signed-Rank test).

Metric LNU-Phish DeltaPhish Mendeley UCI

p-value < 0.0001 0.0005 < 0.0001 < 0.0001
Effect Size 0.2470 0.3256 0.1345 0.2696

Intuitively, POC is effective23 against our Gray Box
attacks because the baseline PDs use ‘fixed’ features
whose modifications result in highly distinct samples. In
contrast, when using POC, the combination of feature
mapping and mixing leads to ‘smoother’ feature modi-
fications that do not result in samples deviating greatly
from their unmodified variants. Let us explain this with
an example. Suppose a sample x is described by (among
others) two binary features f1 and f2, so that f1(x)=1
and f2(x)=1. Assume an attack that modifies the value
of f1 from 1 to 0. This translates to an (adversarial)
sample x̄ whose value of f1 is ‘the opposite’ of its
original variant x. Now consider an implementation of
POC that, in its Ψ, has an oc that sums the two ‘original
features’ f1 and f2, implying that its application to x
results in oc(x)=2. If the attacker modifies f1 of sample
x from 1 to 0, then after applying POC, this modification
would result in oc(x̄)=1 which is ‘less’ different from its
original variant. To achieve the same effects, the attacker
must modify both f1 and f2. This may therefore lead to
a more accurate classification.

We note that the ‘favorable’ results in Table XI are
mostly due to the good hardening performance of POC
against the simple Gray Box Attacks, i.e., GBA-1–GBA-
3 (shown in Table VIII). The hardening provided by
POC against the complex attacks of GBA-∆ (shown
in Table IX) is smaller. Despite this, the next section
showcases a pragmatic use-case which shows the low-
level benefits of POC.

B. Pragmatic Use Case

We evaluated a huge number of classifiers in different
conditions. However, in reality only a single classifier
is used as PD—and the choice is made depending on
its performance at training-time (i.e., in the no-attack
scenario). Hence, we now investigate a pragmatic use
case of POC, where we analyze its benefits and tradeoffs
when applied to ‘harden’ the best classifier for each
dataset (according to Table IV). Figure 5 shows the
Recall of the best baseline classifier alongside its POC
variant when they are subject to the Gray Box attacks
considered in our paper. Each subfigure focuses on a

23The classifiers are more resilient, but we do not claim that POC
yields PDs that are immune to such attacks!

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

specific dataset, and the red line in each subfigure reports
the detection rate in the no-attack case. We analyze these
subfigures, and then make some final recommendations.

1) LNU-Phish analysis: Figure 5a focuses on the LNU-
Phish dataset, where the best classifier is GB which
obtains near perfect performance—a result shared by
its POC variant. However, we can see that the latter
is significantly more robust against GBA-1 as well as
against two GBA-∆ (where ∆ = 60% or 70%), as the
Recall is above 10% superior. Against all other attacks,
the detection rate is either equivalent, or marginally
superior than the baseline (up to 5% increased Recall).

2) DeltaPhish analysis: Figure 5b focuses on the
DeltaPhish dataset, where the best baseline classifier
is also GB, whose POC variant has only a 0.01 less
F1-score in the no-attack case. On this dataset, the
performance of POC is slightly inferior to the baseline
against all the GBA-∆ attacks, but significant differences
arise in the simple attacks: for GBA-1 and GBA-3, the
baseline does not detect any attack whereas POC can
detect a small amount (8%). In contrast, GBA-2 barely
affects the baseline GB but half of its samples can evade
POC. This is the most significant ‘defeat’ of POC—
although its application on other strong baselines can be
beneficial (e.g., for the deep learning MLP classifier, the
Recall against GBA-2 of POC is 0.86 vs 0.77).

3) Mendeley analysis: Figure 5c focuses on the
Mendeley dataset, where the best baseline classifier is
ET. POC provides a significant mitigation (above 10%
better Recall) against 8 out of 10 attacks: the only
exceptions are GBA-∆ with ∆ = 20%, where the
improvement is of smaller entity (4%), and GBA-2
where it is slightly worse than the baseline (by about
5%). Specifically, POC is barely affected by GBA-1, as
it can successfully detect this attack with 0.85 Recall
against the 0.37 of the baseline. All these benefits come
at the ‘cost’ of a 0.03 reduction in F1-score when no
adversarial attack occurs.

4) UCI analysis: Figure 5d focuses on the UCI
dataset, where the best baseline classifier is ET, whose
hardened POC variant achieves the same performance
in the absence of attacks. We note that POC exhibits
weaker Recall (around 8%) than the baseline only against
GBA-∆ with ∆ = 70%. In all other cases, POC is
superior. Noteworthy are the successes against GBA-∆
with ∆ = 40%, where POC has a Recall of over 90%
against the 40% of the baseline; and also against GBA-3,
as the baseline cannot detect any attack, whereas POC
can detect above 40%.

C. POC Without Training

We assess the performance of POC when it is applied
without training (i.e. without using an optimal choice of
Ψ). To make the analysis humanly feasible, we focus on
our proposed LNU-Phish dataset, for which we consider
the ‘best’ baseline classifier: GB. We then “blindly”
apply POC 100 times to this baseline and then we re-do
the experiment by applying POC 1000 times. We perform
this experiments with no training, and by using the same
configuration parameters described in Section VI (i.e.,
having P = 100%). The performance is measured by
computing the TPR and TNR (i.e., 1-FPR) on the test-
set (i.e., 20% of LNU-Phish). The results are shown in
Figures 4.

TNR TPR
0.980

0.985

0.990

0.995

1.000

(a) Results of 100 ‘blind’ Ψ.

TNR TPR
0.980

0.985

0.990

0.995

1.000

(b) Results of 1000 ‘blind’ Ψ.

Figure 4: Distribution of TNR and TPR achieved by ‘blindly’ applying
POC to GB on LNU-Phish (outliers are not shown).

The boxplots show that POC yields practical perfor-
mance even without training: the high TNR (always
above 0.99) denotes low rates of false alarms, whereas
the high TPR (always above 0.98) shows that phishing
webpages are ably detected. It is encouraging that the
distribution barely changes despite going from 100 to
1000 trials. 24.

D. Takeaway Message

By taking into account all above observations, we can
draw the following conclusions. When used to harden
the best classifier, POC is a pragmatic solution against
our Gray Box Attacks in 3 of 4 datasets. This is because
POC provides better (or same) adversarial robustness,
but does not induce a significant performance drop in
the absence of adversarial attacks. In contrast, on the
DeltaPhish dataset, using POC to harden the best baseline
PD is not recommended: although it can detect some
instances of GBA-1 and GBA-3 (against none of the

24Of course, we do not claim this to be valid ‘anywhere-anytime’,
as such experiments focus on just a single configuration of a classifier
(GB) on a single dataset (LNU-Phish)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

baseline), the other results cannot justify its application
to harden the ET classifier on this dataset. This is due
to the specialized nature of the DeltaPhish dataset: while
the other three datasets have malicious samples corre-
sponding to ‘general’ phishing webpages, the DeltaPhish
dataset captures a specific type of phishing attack. The
entries in DeltaPhish are ‘legitimate’ webpages that have
fallen under the control of an attacker, which are different
from phishing pages that are specifically created by an
attacker. Hence, the high specificity of this dataset may
yield a suboptimal hardening by POC (on the very best
baseline PD) against the proposed Gray Box Attacks.

Finally, we remark that POC has—by definition—the
additional benefit of yielding PDs that are hard to reverse
engineer. This increases the difficulty of launching model
stealing attacks, such as those conducted against the
Google’s Chrome phishing filter in [76]. Furthermore,
even if an attacker were able to fully ‘crack’ a POC-
hardened PD and infer its feature set, the attacker must
repeat the process when the PD is periodically updated
(to mitigate concept-drift [40]) with more recent data, as
the feature mapping is likely to change.

VIII. EXPERIMENTS: POC WITHOUT COMPLETE
PREVALENCE

As a final contribution of this paper, we evaluate the
effectiveness of POC when P(F,Ψ) < 100%, meaning
that some features of F are not included in any oc
composing Ψ. The expectation is that the robustness
against attacks will increase (due to the ‘explicit’ feature
removal), but the performance in the absence of adver-
sarial attacks will decrease because some information is
lost (cf. Section V-B).

A. Experimental Settings

For simplicity, we perform experiments only on the
LNU-Phish dataset, where we consider the classifier
yielding the best ‘baseline’ PD—specifically, the GB
classifier (cf. Section VII-B1). The experimental settings
are exactly the same as those described in Section VI-A,
but we do not require that P(F,Ψ)=100%. In particular,
we assess POC for different P . Hence, we apply POC so
that the resulting P(F,Ψ) falls within 6 values ranging
from 65% to 90% (at 5% increments). As an example,
since the LNU-Phish dataset contains 27 features (cf.
Table II), when P(F,Ψ)=70% it means that the POC-
hardened PD uses 19 features (across all its oc).

B. Results

We evaluate all such POC-hardened variants of the GB
classifier both in the absence of attacks and against all

the 10 adversarial attacks considered in our paper, and
report the results in Figures 6.

Figure 6a shows the false positive rate as a function
of P; where the two leftmost bars report the FPR of the
‘baseline’ GB and the POC-hardened GB with complete
prevalence (from Section VI). In contrast, Figure 6b
shows the detection rate against all the considered ad-
versarial attacks (on the horizontal axis), as well as in
the no-attack case (the leftmost value); the dotted lines
represent the results reported in Section VI (included
for comparison), whereas full lines represent the POC-
hardened PDs with varying prevalence.

From Figure 6 we can see that—in the absence of
attacks—the performance of POC when P ≤ 90% is
worse with respect to the results shown in Section VI-B.
Indeed, when no attacks occur, the FPR (Figure 6a) is
higher and the detection rate (leftmost value in Figure 6b)
is also inferior. This is due to the loss of information
induced when P<100%. However, such increased FPR
is ably compensated by the greater detection rate in the
presence of adversarial attacks. As shown in Figure 6b.
with the sole exception of GBA-∆ where ∆=10 or 20%,
the full lines denote better results than the dotted lines.
As an example, when P=70%, the corresponding PD is
not affected at all by the simple attacks, and its detection
rate never goes below 83%—but, it also achieves the
greatest FPR (0.073 according to Figure 6a).

In summary, these results match our expectations.
From a practical perspective, using POC without com-
plete prevalence is beneficial if a PD is likely to be
targeted by the proposed Gray Box attacks, and if the
deployment setting can accept a slightly worse perfor-
mance in the absence of such attacks.

IX. CONCLUSIONS

It is clear from ProofPoint’s 2020 “State of the Phish”
report that despite decades of work to counter phishing
attacks, phishing represents a major attack vector for
malicious hackers.

In this paper, we propose a series of complex and sim-
ple Gray Box attacks on existing machine learning based
classifiers for phishing website detection. We formally
define the Impact of an attack on a dataset and classifier
in terms of the percentage drop in predictive performance
and show that these attacks cause a significant drop in
performance of past work using ML classifiers.

We develop the POC algorithm that uses a mix of
randomization (to reduce the probability that the ad-
versary can guess the features used) and feature trans-
formation (to further reduce this probability). We show
that POC—despite not representing a universal panacea

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 17

GBA1 GBA2 GBA3 GBA
(10%)

GBA
(20%)

GBA
(30%)

GBA
(40%)

GBA
(50%)

GBA
(60%)

GBA
(70%)

Gray Box Attacks

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

LNU-Phish
Baseline
POC

(a) LNU-Phish. Best baseline: GB
(F1-score: 0.99, and 0.99 for POC).

GBA1 GBA2 GBA3 GBA
(10%)

GBA
(20%)

GBA
(30%)

GBA
(40%)

GBA
(50%)

GBA
(60%)

GBA
(70%)

Gray Box Attacks

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

DeltaPhish
Baseline
POC

(b) DeltaPhish. Best baseline: GB
(F1-score: 0.99, and 0.98 for POC).

GBA1 GBA2 GBA3 GBA
(10%)

GBA
(20%)

GBA
(30%)

GBA
(40%)

GBA
(50%)

GBA
(60%)

GBA
(70%)

Gray Box Attacks

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Mendeley

Baseline
POC

(c) Mendeley. Best baseline: ET
(F1-score: 0.99, and 0.96 for POC).

GBA1 GBA2 GBA3 GBA
(10%)

GBA
(20%)

GBA
(30%)

GBA
(40%)

GBA
(50%)

GBA
(60%)

GBA
(70%)

Gray Box Attacks

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

UCI

Baseline
POC

(d) UCI. Best baseline: ET
(F1-score: 0.99, and 0.99 for POC)

Figure 5: Effectiveness of attacks (as measured via the Recall) against the best baseline PD and its POC-hardened version on each dataset. The
red line on each subfigure is the Recall in the absence of attacks. The caption of each subfigure reports the F1-score in the no-attack case.

no-POC 100% 90% 85% 80% 75% 70% 65%
Prevalence

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fa
lse

 P
os

iti
ve

 R
at

e

(a) False Positive Rate.

NoAtk GBA-1 GBA-2 GBA-3 GBA-
(10%)

GBA-
(20%)

GBA-
(30%)

GBA-
(40%)

GBA-
(50%)

GBA-
(60%)

GBA-
(70%)

Adversarial Attack

0.5

0.6

0.7

0.8

0.9

1.0

De
te

ct
io

n
Ra

te
 (R

ec
al

l)

Prevalence
90%
85%
80%
75%
70%
65%
100%
no-POC

(b) Detection Rate.

Figure 6: Performance of POC with varying prevalence.

against adversarial attacks—is more robust against all
the considered Gray Box attacks than past classifiers,
and does not degrade their performance in the absence
of such attacks.

Our paper considers 13 classifiers (including new
classifiers such as Google’s Deep & Wide that have
not been used previously for phishing detectors to the
best of our knowledge) using 4 datasets (including the
new LNU-Phish dataset that we release as an additional
contribution of this paper). In contrast, most past work
on adversarial phishing detectors consider only one
dataset and one classifier.

Acknowledgements. We thank the anonymous referees
for their excellent comments. We are also grateful to
ONR grant N00014-20-1-2407.

REFERENCES

[1] D. Maiorca, B. Biggio, and G. Giacinto, “Towards adversarial
malware detection: lessons learned from PDF-based attacks,”
ACM Comp. Surv., vol. 52, no. 4, pp. 1–36, 2019.

[2] A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion detection,”
IEEE Commun. Surveys Tut., vol. 18, no. 2, pp. 1153–1176, 2015.

[3] M. Mayhew, M. Atighetchi, A. Adler, and R. Greenstadt, “Use
of machine learning in big data analytics for insider threat
detection,” in IEEE Conf. Milit. Comm., 2015, pp. 915–922.

[4] M. Zhao, B. An, W. Gao, and T. Zhang, “Efficient label contam-
ination attacks against black-box learning models,” in Int. Joint
Conf. Artif. Intell., 2017, pp. 3945–3951.

[5] A. Subasi, E. Molah, F. Almkallawi, and T. J. Chaudhery, “Intel-
ligent phishing website detection using random forest classifier,”
in IEEE Int. Conf. Elec. Comput. Tech. Appl., 2017, pp. 1–5.

[6] T. W. Moore and R. Clayton, “The impact of public information
on phishing attack and defense,” Communications and Strategies,
no. 81, pp. 45–68, 2011.

[7] R. Basnet, “Learning to Detect Phishing URLs,” Int. J. Res. Eng.
Tech., vol. 03, pp. 11–24, 2014.

[8] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection
based associative classification data mining,” Elsevier Expert Syst.
Appl., vol. 41, no. 13, pp. 5948–5959, 2014.

[9] N. Abdelhamid, F. Thabtah, and H. Abdel-jaber, “Phishing de-
tection: A recent intelligent machine learning comparison based
on models content and features,” in Proc. IEEE Int. Conf. Intel.
Secur. Inform., 2017, pp. 72–77.

[10] R. Verma and K. Dyer, “On the character of phishing urls:
Accurate and robust statistical learning classifiers,” in Proc. ACM
Conf. Data Appl. Secur. Privacy, 2015, pp. 111–122.

[11] S. C. Jeeva and E. B. Rajsingh, “Intelligent phishing url detection
using association rule mining,” Springer Hum-Cent. Comput.
Info., vol. 6, no. 1, p. 10, 2016.

[12] C. L. Tan, K. L. Chiew, K. Wong et al., “Phishwho: Phishing
webpage detection via identity keywords extraction and target
domain name finder,” Elsevier Decis. Support Syst., vol. 88, pp.
18–27, 2016.

[13] A. Niakanlahiji, B.-T. Chu, and E. Al-Shaer, “Phishmon: A
machine learning framework for detecting phishing webpages,”
in Proc. IEEE Int. Conf. Intel. Secur. Inf., 2018, pp. 220–225.

[14] W. Ali, “Phishing website detection based on supervised machine
learning with wrapper features selection,” Int. J. Adv. Comp. Sci.
Appl., vol. 8, no. 9, pp. 72–78, 2017.

[15] E. Lancaster, T. Chakraborty, and V. Subrahmanian, “Maltp:
Parallel prediction of malicious tweets,” IEEE T. Computational
Social Systems, vol. 5, no. 4, pp. 1096–1108, 2018.

[16] D. L. Cook, V. K. Gurbani, and M. Daniluk, “Phishwish: a
stateless phishing filter using minimal rules,” in Proc. Springer
Int. Conf. Financ. Crypt. Data Secur., 2008, pp. 182–186.

[17] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proc. ACM Int.
Conf. World Wide Web, 2007, pp. 639–648.

[18] K.-T. Chen, J.-Y. Chen, C.-R. Huang, and C.-S. Chen, “Fighting
phishing with discriminative keypoint features,” IEEE Internet
Comput., vol. 13, no. 3, pp. 56–63, 2009.

[19] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based
phishing detection,” in Proc. ACM Int. Conf. Secur. Privacy
Commun. Netw., 2008, p. 22.

[20] M. Hara, A. Yamada, and Y. Miyake, “Visual similarity-based
phishing detection without victim site information,” in Proc. IEEE
Symp. Comput. Intel. Cyber Secur., 2009, pp. 30–36.

[21] H. Kim and J. Huh, “Detecting dns-poisoning-based phishing
attacks from their network performance characteristics,” IET
Electron. Lett., vol. 47, no. 11, pp. 656–658, 2011.

[22] G. Liu, B. Qiu, and L. Wenyin, “Automatic detection of phishing
target from phishing webpage,” in Proc. IEEE Int. Conf. Pattern
Recogn., 2010, pp. 4153–4156.

[23] H. Zhang, G. Liu, T. W. Chow, and W. Liu, “Textual and
visual content-based anti-phishing: a bayesian approach,” IEEE
T. Neural Netw., vol. 22, no. 10, pp. 1532–1546, 2011.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 18

[24] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic
classification of phishing pages,” Google AI, Tech. Rep., 2010.

[25] L. F. Cranor, S. Egelman, J. I. Hong, and Y. Zhang, “Phinding
phish: An evaluation of anti-phishing toolbars.” in Netw. Distrib.
Syst. Symp., 2007, pp. 1–19.

[26] A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß, and
S. Strobel, “New filtering approaches for phishing email,” J.
Comp. Secur., vol. 18, no. 1, pp. 7–35, 2010.

[27] F. Toolan and J. Carthy, “Phishing detection using classifier
ensembles,” in IEEE eCrime Researchers Summit, 2009, pp. 1–9.

[28] H. Kettani and P. Wainwright, “On the Top Threats to CyberSys-
tems,” in IEEE Int. Conf. Inf. Comp. Tech., 2019, pp. 175–179.

[29] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Predicting
phishing websites based on self-structuring neural network,”
Springer Neural Comput. Appl., vol. 25, no. 2, pp. 443–458, 2014.

[30] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda, M. Mereu,
G. Mureddu, D. Ariu, and F. Roli, “Deltaphish: Detecting phish-
ing webpages in compromised websites,” in Proc. Springer Eu-
rop. Symp. Res. Comput. Secur., 2017, pp. 370–388.

[31] M. Babagoli, M. P. Aghababa, and V. Solouk, “Heuristic nonlin-
ear regression strategy for detecting phishing websites,” Springer
Soft Comput., vol. 23, no. 12, pp. 4315–4327, 2019.

[32] A. K. Jain and B. B. Gupta, “Towards detection of phishing
websites on client-side using machine learning based approach,”
Springer Telecom. Syst., vol. 68, no. 4, pp. 687–700, 2018.

[33] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine
learning based phishing detection from urls,” Elsevier Expert Syst.
Appl., vol. 117, pp. 345–357, 2019.

[34] “Deltaphish dataset,” https://www.pluribus-one.it/it/chi-siamo/
blog/84-cybersecurity/77-deltaphish, accessed: Sept. 2020.

[35] “Mendeley phishing dataset,” https://data.mendeley.com/datasets/
h3cgnj8hft/1, accessed: Sept. 2020.

[36] “Uci phishing websites dataset,” https://archive.ics.uci.edu/ml/
datasets/phishing+websites, accessed: Sept. 2020.

[37] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
blacklists: learning to detect malicious web sites from suspicious
urls,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2009, pp. 1245–1254.

[38] W. Wang and K. Shirley, “Breaking bad: Detecting malicious
domains using word segmentation,” arXiv: 1506.04111, 2015.

[39] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework
for detection and measurement of phishing attacks,” in Proc. ACM
Workshop Recurring Malcode, 2007, pp. 1–8.

[40] K. Tian, S. T. Jan, H. Hu, D. Yao, and G. Wang, “Needle in a
haystack: Tracking down elite phishing domains in the wild,” in
Proc. Internet Measurement Conf., 2018, pp. 429–442.

[41] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[42] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in IEEE Euro Symp. Secur. Privacy, 2016, pp. 372–387.

[43] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv 1412.6572, 2014.

[44] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo:
Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models,” in Proc. ACM
Workshop Artif. Intel. Secur., 2017, pp. 15–26.

[45] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evolut. Comput., 2019.

[46] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands,” in USENIX
Secur. Symp., 2016, pp. 513–530.

[47] R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” in Proc. Conf. Empiric. Methods Natur.
Lang. Process., 2017, pp. 2021–2031.

[48] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Elsevier Pattern Recogn., vol. 84,
pp. 317–331, 2018.

[49] Z. Katzir and Y. Elovici, “Quantifying the resilience of machine
learning classifiers used for cyber security,” Elsevier Expert Syst.
Appl., vol. 92, pp. 419–429, 2018.

[50] M. Kantarcioglu and B. Xi, “Adversarial data mining: Big data
meets cyber security,” in Proc. ACM Conf. Comput. Comm.
Secur., 2016, pp. 1866–1867.

[51] Y. Shi and Y. E. Sagduyu, “Evasion and causative attacks with
adversarial deep learning,” in Proc. IEEE Conf. Military Comm.,
2017, pp. 243–248.

[52] Y. Vorobeychik and M. Kantarcioglu, “Adversarial machine learn-
ing,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 12, no. 3, pp. 1–169, 2018.

[53] A. Warzyński and G. Kołaczek, “Intrusion detection systems
vulnerability on adversarial examples,” in Proc. IEEE Conf.
Innovations Intell. Syst. Appl., Jul. 2018, pp. 1–4.

[54] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li,
“Automated poisoning attacks and defenses in malware detection
systems: An adversarial machine learning approach,” Elsevier
Comp. Secur., vol. 73, pp. 326–344, 2018.

[55] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice,
V. Wongrassamee, E. C. Lupu, and F. Roli, “Towards poisoning
of deep learning algorithms with back-gradient optimization,” in
Proc. ACM Workshop Artif. Intel. Secur., Nov. 2017, pp. 27–38.

[56] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. Mc-
Daniel, “Adversarial examples for malware detection,” in Proc.
Springer Europ. Symp. Res. Comput. Secur., 2017, pp. 62–79.

[57] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic
black-box end-to-end attack against state of the art api call based
malware classifiers,” in Proc. Springer Int. Symp. Res. Attacks,
Intrusions and Defenses, 2018, pp. 490–510.

[58] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 506–519.

[59] H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by
morphing in the dark,” in Proc. ACM Conf. Comp. Commun.
Secur., 2017, pp. 119–133.

[60] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,”
in Proc. Netw. Distrib. Syst. Symp., 2016, pp. 21–24.

[61] B. Li and Y. Vorobeychik, “Feature cross-substitution in adver-
sarial classification,” in Proc. Advances Neur. Inf. Process. Syst.
Conf., 2014, pp. 2087–2095.

[62] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. Subrahmanian,
“Dbank: Predictive behavioral analysis of recent android banking
trojans,” IEEE T. Depend. Secur., 2019.

[63] T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2: ensem-
ble clustering and classification for predicting android malware
families,” IEEE T. Depend. Secur., 2017.

[64] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be
more secure! a case study on android malware detection,” IEEE
T. Depend. Secure., 2017.

[65] G. Apruzzese and M. Colajanni, “Evading botnet detectors based
on flows and random forest with adversarial samples,” in Proc.
IEEE Int. Symp. Netw. Comput. Appl., 2018, pp. 1–8.

[66] H. S. Anderson, J. Woodbridge, and B. Filar, “Deepdga:
Adversarially-tuned domain generation and detection,” in Proc.
ACM Workshop Artif. Intell. Secur., 2016, pp. 13–21.

[67] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Caval-
laro, “Enabling fair ml evaluations for security,” in Proc. ACM
Conf. Comput. Commun. Secur., 2018, pp. 2264–2266.

[68] J. Gardiner and S. Nagaraja, “On the security of machine learning
in malware c&c detection: A survey,” ACM Comput. Surv.,
vol. 49, no. 3, p. 59, 2016.

[69] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations against deep
neural networks,” in Proc. 2016 IEEE Symp. Secur. Privacy, 2016,
pp. 582–597.

https://www.pluribus-one.it/it/chi-siamo/blog/84-cybersecurity/77-deltaphish
https://www.pluribus-one.it/it/chi-siamo/blog/84-cybersecurity/77-deltaphish
https://data.mendeley.com/datasets/h3cgnj8hft/1
https://data.mendeley.com/datasets/h3cgnj8hft/1
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://archive.ics.uci.edu/ml/datasets/phishing+websites

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 19

[70] A. Kantchelian, J. Tygar, and A. Joseph, “Evasion and hardening
of tree ensemble classifiers,” in Int. Conf. Machin. Learn., 2016,
pp. 2387–2396.

[71] B. Biggio, I. Corona, Z.-M. He, P. P. Chan, G. Giacinto, D. S.
Yeung, and F. Roli, “One-and-a-half-class multiple classifier
systems for secure learning against evasion attacks at test time,”
in Proc. Springer Int. Workshop Multiple Classifier Syst., 2015,
pp. 168–180.

[72] P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli,
“Secure kernel machines against evasion attacks,” in Proc. ACM
Workshop Artif. Intel. Secur., 2016, pp. 59–69.

[73] Z. He, J. Su, M. Hu, G. Wen, S. Xu, and F. Zhang, “Robust
support vector machines against evasion attacks by random gen-
erated malicious samples,” in Proc. IEEE Int. Conf. Wavelet Anal.
Pattern Recogn., 2017, pp. 243–247.

[74] B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE T. Knowl. Data En., vol. 26, no. 4,
pp. 984–996, 2013.

[75] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and
M. Colajanni, “Modeling realistic adversarial attacks against
network intrusion detection systems,” ACM Digital Threats: Re-
search and Practice, 2021.

[76] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking
classifiers for evasion: a case study on the Google’s phishing
pages filter,” in Proc. Int. Conf. World Wide Web, 2016, pp. 345–
356.

[77] S. Marchal, J. Francois, R. State, and T. Engel, “Phishstorm:
Detecting phishing with streaming analytics,” IEEE T. Netw. Serv.
Manag., vol. 11, no. 4, pp. 458–471, 2014.

[78] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouret-
dinov, and L. Cavallaro, “Transcend: Detecting concept drift
in malware classification models,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 625–642.

[79] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Arad-
hye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide &
deep learning for recommender systems,” in Proc. ACM Workshop
on Deep Learn. for Recommender Syst., Sep. 2016, pp. 7–10.

[80] R. B. Basnet and T. Doleck, “Towards developing a tool to detect
phishing urls: a machine learning approach,” in Proc. IEEE Int.
Conf. Comput. Intel. Commun. Techn., Feb. 2015, pp. 220–223.

[81] C. Smutz and A. Stavrou, “Malicious pdf detection using meta-
data and structural features,” in Proc. ACM Conf. Comput. Secur.
Appl., Dec. 2012, pp. 239–248.

[82] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti,
“Addressing adversarial attacks against security systems based
on machine learning,” in Proc. IEEE Int. Conf. Cyber Conflicts,
2019, pp. 1–18.

[83] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in Proc. IEEE Symp. Secur. Priv., 2018, pp. 36–52.

Giovanni Apruzzese is an Assistant Profes-
sor within the Hilti Chair of Data and Appli-
cation Security at the University of Liechten-
stein since 2022, and was previously a Post-
Doc at the same institution since 2020. He
received the PhD Degree and the Master’s De-
gree in Computer Engineering (summa cum
laude) in 2020 and 2016 respectively at the
Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia,
Italy. In 2019 he spent 6 months as a Visiting

Researcher at Dartmouth College (Hanover, NH, USA) under the
supervision of Prof. V.S. Subrahmanian. His research interests involve
all aspects of big data security analytics with a focus on machine
learning, and his main expertise lies in the analysis of Network
Intrusions, Phishing, and Adversarial Attacks.

Homepage: https://gioapru.github.io

V.S. Subrahmanian is the Walter P. Murphy
Professor of Computer Science and Buffett
Faculty Fellow in the Buffett Institute of
Global Affairs at Northwestern University. He
was previously the Dartmouth College Distin-
guished Professor in Cybersecurity, Technol-
ogy, and Society and Director of the Insti-
tute for Security, Technology, and Society at
Dartmouth. Before that, he was a Professor of
Computer Science at the University of Mary-
land from 1989-2017 where he also served for

6+ years as Director of the University of Maryland’s Institute for Ad-
vanced Computer Studies. Prof. Subrahmanian is an expert on big data
analytics including methods to analyze text/geospatial/relational/social
network data, learn behavioral models from the data, forecast actions,
and influence behaviors with applications to cybersecurity and coun-
terterrorism. He has written five books, edited ten, and published over
300 refereed articles. He is a Fellow of the American Association for
the Advancement of Science and the Association for the Advancement
of Artificial Intelligence and received numerous other honors and
awards. His work has been featured in numerous outlets such as the
Baltimore Sun, the Economist, Science, Nature, the Washington Post,
American Public Media. He serves on the editorial boards of numerous
journals including Science, the Board of Directors of the Development
Gateway Foundation (set up by the World Bank), SentiMetrix, Inc.,
and on the Research Advisory Board of Tata Consultancy Services.
He previously served on DARPA’s Executive Advisory Council on
Advanced Logistics and as an ad-hoc member of the US Air Force
Science Advisory Board.

Homepage: https://vssubrah.github.io/

https://gioapru.github.io
https://vssubrah.github.io/

	Introduction
	Related work
	Detection of Phishing Websites
	Adversarial Machine Learning
	Adversarial Attacks Against Phishing Detectors

	The LNU-Phish Dataset
	Problems with Existing Phishing Datasets.
	Solution: LNU-Phish
	Creation Workflow of LNU-Phish
	LNU-Phish Dataset Features

	Proposed Gray Box Attacks on Phishing Detectors
	Simple Attacks
	Complex attacks
	Impact of Adversarial Attacks

	Proposed Countermeasure: The POC Algorithm
	Formal description of POC
	Analysis of POC

	Experiments
	Testbed
	No Attack Case: Performance of Baselines vs. POC
	Attacks against existing PDs
	Attacks against POC
	Run Time of Training Phase

	Discussion
	Statistical Analysis
	No-attack case performance
	Impact Assessment
	Protection of POC

	Pragmatic Use Case
	LNU-Phish analysis
	DeltaPhish analysis
	Mendeley analysis
	UCI analysis

	POC Without Training
	Takeaway Message

	Experiments: POC without complete prevalence
	Experimental Settings
	Results

	Conclusions
	References
	Biographies
	Giovanni Apruzzese
	V.S. Subrahmanian

